TY - JOUR
T1 - Sensitization of isolated rat vagal pulmonary sensory neurons by eosinophil-derived cationic proteins
AU - Gu, Qihai
AU - Wiggers, Michelle E.
AU - Gleich, Gerald J.
AU - Lee, Lu Yuan
PY - 2008/3
Y1 - 2008/3
N2 - It has been shown that airway exposure to eosinophil-derived cationic proteins stimulated vagal pulmonary C fibers and markedly potentiated their responses to lung inflation in anesthetized rats (Lee LY, Gu Q, Gleich GJ, J Appl Physiol 91: 1318-1326, 2001). However, whether the effects resulted from a direct action of these proteins on the sensory nerves was not known. The present study was therefore carried out to determine the effects of these proteins on isolated rat vagal pulmonary sensory neurons. Our results obtained from perforated whole cell patch-clamp recordings showed that pretreatment with eosinophil major basic protein (MBP; 2 μM, 60 s) significantly increased the capsaicin-evoked inward current in these neurons; this effect peaked ∼10 min after MBP and lasted for >60 min; in current-clamp mode, MBP substantially increased the number of action potentials evoked by both capsaicin and electrical stimulation. Pretreatment with MBP did not significantly alter the input resistance of these sensory neurons. In addition, the sensitizing effect of MBP was completely abolished when its cationic charge was neutralized by mixing with a polyanion, such as low-molecular-weight heparin or poly-L-glutamic or poly-L-aspartic acid, before its delivery to the neurons. Moreover, a similar sensitizing effect was also generated by other eosinophil granule-derived proteins (e.g., eosinophil peroxidase). These results demonstrate a direct, charge-dependent, and long-lasting sensitizing effect of cationic proteins on pulmonary sensory neurons, which may contribute to the airway hyperresponsiveness associated with airway infiltration of eosinophils under pathophysiological conditions.
AB - It has been shown that airway exposure to eosinophil-derived cationic proteins stimulated vagal pulmonary C fibers and markedly potentiated their responses to lung inflation in anesthetized rats (Lee LY, Gu Q, Gleich GJ, J Appl Physiol 91: 1318-1326, 2001). However, whether the effects resulted from a direct action of these proteins on the sensory nerves was not known. The present study was therefore carried out to determine the effects of these proteins on isolated rat vagal pulmonary sensory neurons. Our results obtained from perforated whole cell patch-clamp recordings showed that pretreatment with eosinophil major basic protein (MBP; 2 μM, 60 s) significantly increased the capsaicin-evoked inward current in these neurons; this effect peaked ∼10 min after MBP and lasted for >60 min; in current-clamp mode, MBP substantially increased the number of action potentials evoked by both capsaicin and electrical stimulation. Pretreatment with MBP did not significantly alter the input resistance of these sensory neurons. In addition, the sensitizing effect of MBP was completely abolished when its cationic charge was neutralized by mixing with a polyanion, such as low-molecular-weight heparin or poly-L-glutamic or poly-L-aspartic acid, before its delivery to the neurons. Moreover, a similar sensitizing effect was also generated by other eosinophil granule-derived proteins (e.g., eosinophil peroxidase). These results demonstrate a direct, charge-dependent, and long-lasting sensitizing effect of cationic proteins on pulmonary sensory neurons, which may contribute to the airway hyperresponsiveness associated with airway infiltration of eosinophils under pathophysiological conditions.
KW - Airway hypersensitivity
KW - Airway inflammation
KW - Eosinophil cationic protein
KW - Eosinophil peroxidase
KW - Major basic protein
UR - http://www.scopus.com/inward/record.url?scp=41549111437&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=41549111437&partnerID=8YFLogxK
U2 - 10.1152/ajplung.00271.2007
DO - 10.1152/ajplung.00271.2007
M3 - Article
C2 - 18178677
AN - SCOPUS:41549111437
SN - 1040-0605
VL - 294
SP - L544-L552
JO - American Journal of Physiology - Lung Cellular and Molecular Physiology
JF - American Journal of Physiology - Lung Cellular and Molecular Physiology
IS - 3
ER -