Se(VI) reduction by continuous-flow reactors packed with Shigella fergusonii strain TB42616 immobilized by Ca2+-alginate gel beads

Yuxia Ji, Yi Tin Wang

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Selenium at high levels may cause adverse health effects on human beings and endanger aquatic lives due to its toxicity. Se(VI) reduction in continuous-flow reactors packed with Shigella fergusonii strain TB42616 immobilized by Ca2+-alginate gel beads was investigated under various hydraulic retention times (HRT) and influent Se(VI) concentrations. Removal efficiency up to 98.8 % was achieved after 96 days operation under an HRT of 5 days and an influent Se(VI) concentration of 400 mg/L. The results showed that the overall selenium removal efficiency was affected by the HRT and the bed height of the reactor but not the influent Se(VI) concentration. The steady-state data were analyzed using a mathematical model and Monod-type kinetics. Biokinetic parameters of half-velocity constants and maximum specific reduction rates were optimized using steady-state data obtained under a range of HRTs (0.73–5.0 days) at a constant influent Se(VI) concentration of 50 mg/L. The model was validated using steady-state data obtained under influent Se(VI) concentrations ranging from 10 to 400 mg/L while maintaining the HRT at 5.0 days. The high correlation coefficients between model calculated Se(VI) and Se(IV) concentrations and the experimental data indicate that the model is robust to predict the performance of the continuous-flow bioreactor.

Original languageEnglish
Pages (from-to)46-56
Number of pages11
JournalPROCESS BIOCHEMISTRY
Volume91
DOIs
StatePublished - Apr 2020

Bibliographical note

Publisher Copyright:
© 2019 Elsevier Ltd

Keywords

  • Alginate beads
  • Continuous-flow reactor
  • Immobilized biomass
  • Selenium reduction

ASJC Scopus subject areas

  • Bioengineering
  • Biochemistry
  • Applied Microbiology and Biotechnology

Fingerprint

Dive into the research topics of 'Se(VI) reduction by continuous-flow reactors packed with Shigella fergusonii strain TB42616 immobilized by Ca2+-alginate gel beads'. Together they form a unique fingerprint.

Cite this