Abstract
Traumatic brain injury (TBI) is a complex disease to study due to the multifactorial injury cascades occurring after the initial blow to the head. One of the most vital players in this secondary injury cascade, and therapeutic target of interest, is the mitochondrion. Mitochondria are important for the generation of cellular energy, regulation of cell death, and modulation of intracellular calcium which leaves these “powerhouses” especially susceptible to damage and dysfunction following traumatic brain injury. Most of the existing studies involving mitochondrial dysfunction after TBI have been performed in male rodent models, leaving a gap in knowledge on these same outcomes in females. This mini-review intends to highlight the available data on mitochondrial dysfunction in male and female rodents after controlled cortical impact (CCI) as a common model of TBI.
Original language | English |
---|---|
Article number | 753946 |
Journal | Frontiers in Molecular Neuroscience |
Volume | 14 |
DOIs | |
State | Published - Oct 13 2021 |
Bibliographical note
Funding Information:PS’s effort was funded in part by NIH R01 NS112693-01A1. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. OK’s effort was funded in part by a pre-doctoral fellowship from Kentucky Spinal Cord and Head Injury Research Trust (KSCHIRT).
Publisher Copyright:
© Copyright © 2021 Kalimon and Sullivan.
Keywords
- CNS injury
- bioenergetics
- glucose utilization
- oxidative stress
- sex hormone influence
ASJC Scopus subject areas
- Molecular Biology
- Cellular and Molecular Neuroscience