Sine-wave electrical stimulation initiates a voltage-gated potassium channel-dependent soft tissue response characterized by induction of hemocyte recruitment and collagen deposition

Brandon M. Franklin, Eleni Maroudas, Jeffrey L. Osborn

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Soft tissue repair is a complex process that requires specific communication between multiple cell types to orchestrate effective restoration of physiological functions. Macrophages play a critical role in this wound healing process beginning at the onset of tissue injury. Understanding the signaling mechanisms involved in macrophage recruitment to the wound site is an essential step for developing more effective clinical therapies. Macrophages are known to respond to electrical fields, but the underlying cellular mechanisms mediating this response is unknown. This study demonstrated that low-amplitude sine-wave electrical stimulation (ES) initiates a soft tissue response in the absence of injury in Procambarus clarkii. This cellular response was characterized by recruitment of macrophage-like hemocytes to the stimulation site indicated by increased hemocyte density at the site. ES also increased tissue collagen deposition compared to sham treatment (P < 0.05). Voltage-gated potassium (KV) channel inhibition with either 4-aminopyridine or astemizole decreased both hemocyte recruitment and collagen deposition compared to saline infusion (P < 0.05), whereas inhibition of calcium-permeable channels with ruthenium red did not affect either response to ES. Thus, macrophage-like hemocytes in P. clarkii elicit a wound-like response to exogenous ES and this is accompanied by collagen deposition. This response is mediated by KV channels but independent of Ca2+ channels. We propose a significant role for KV channels that extends beyond facilitating Ca2+ transport via regulation of cellular membrane potentials during ES of soft tissue.

Original languageEnglish
Article numbere12832
JournalPhysiological Reports
Volume4
Issue number12
DOIs
StatePublished - Jun 1 2016

Bibliographical note

Publisher Copyright:
© 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

Keywords

  • Electrical stimulation
  • hemocyte
  • macrophage
  • voltage-gated potassium channels

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Sine-wave electrical stimulation initiates a voltage-gated potassium channel-dependent soft tissue response characterized by induction of hemocyte recruitment and collagen deposition'. Together they form a unique fingerprint.

Cite this