Sleep Depth Enhancement Through Ambient Temperature Manipulation in Mice

Asmara Ajwad, Dillon Huffman, Farid Yaghouby, Bruce F. Orhara, Sridhar Sunderam

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The restorative properties of deep sleep and its central role in learning and memory are well-recognized but still in the process of being elucidated with the help of animal models. Currently available approaches for deep sleep enhancement are mainly pharmacological and may have undesirable side effects on physiology and behavior. Here, we propose a simple strategy for sleep depth enhancement that involves manipulation of ambient temperature (Ta) using a closed-loop control system. Even mild shifts in Ta are known to evoke thermoregulatory responses that alter sleep-wake dynamics. In our experiments, mice evinced greater proportions of deep NREM sleep as well as REM sleep under the dynamic sleep depth modulation protocol compared to a reference baseline in which Ta was left unchanged. The active manipulation approach taken in this study could be used as a more natural means for enhancing deep sleep in patients with disorders like epilepsy, Alzheimer's disease and Parkinson's, in which poor quality sleep is common and associated with adverse outcomes.

Original languageEnglish
Title of host publication40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
Pages1392-1395
Number of pages4
ISBN (Electronic)9781538636466
DOIs
StatePublished - Oct 26 2018
Event40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018 - Honolulu, United States
Duration: Jul 18 2018Jul 21 2018

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2018-July
ISSN (Print)1557-170X

Conference

Conference40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
Country/TerritoryUnited States
CityHonolulu
Period7/18/187/21/18

Bibliographical note

Publisher Copyright:
© 2018 IEEE.

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Sleep Depth Enhancement Through Ambient Temperature Manipulation in Mice'. Together they form a unique fingerprint.

Cite this