Soil-Litter Mixing Accelerates Decomposition in a Chihuahuan Desert Grassland

Daniel B. Hewins, Steven R. Archer, Gregory S. Okin, Rebecca L. McCulley, Heather L. Throop

Research output: Contribution to journalArticlepeer-review

55 Scopus citations

Abstract

Decomposition models typically under-predict decomposition relative to observed rates in drylands. This discrepancy indicates a significant gap in our mechanistic understanding of carbon and nutrient cycling in these systems. Recent research suggests that certain drivers of decomposition that are often not explicitly incorporated into models (for example, photodegradation and soil-litter mixing; SLM) may be important in drylands, and their exclusion may, in part, be responsible for model under-predictions. To assess the role of SLM, litterbags were deployed in the Chihuahuan Desert and interrelationships between vegetation structure, SLM, and rates of decomposition were quantified. Vegetation structure was manipulated to simulate losses of grass cover from livestock grazing and shrub encroachment. We hypothesized that reductions in grass cover would promote SLM and accelerate mass loss by improving conditions for microbial decomposition. Litter mass decreased exponentially, with the greatest losses occurring in concert with summer monsoons. There were no differences in decay constants among grass cover treatments. A significant, positive relationship between mass loss and SLM was observed, but contrary to expectations SLM was independent of grass cover. This suggests that processes operating at finer spatial scales than those in our grass removal treatments were influencing SLM. Shifts in litter lipid composition suggest increased bacterial contribution to decomposition through time. SLM, which is seldom included as a variable controlling decomposition in statistical or mechanistic models, was a strong driver of decomposition. Results are discussed in the context of other known drivers of decomposition in drylands (for example, UV radiation and climate) and more mesic systems.

Original languageEnglish
Pages (from-to)183-195
Number of pages13
JournalEcosystems
Volume16
Issue number2
DOIs
StatePublished - Mar 2013

Bibliographical note

Funding Information:
We appreciate thoughtful comments by two reviewers. We appreciate laboratory and field assistance from L. Ebbs, J. Fitzgerald, T. Clawson, J. Nelson, J. Ahmed, and N. Nahid. We thank J.A. Perez for statistical consultation and field assistance, and W.G. Whitford, B. Bestelmeyer, and J. Anderson for helpful discussions. This work was supported by an NSF collaborative grant (DEB 0815808 to HT, DEB 0816162 to SA, DEB 0814461 to RM) and the Jornada Basin LTER (NSF DEB 0618210).

Funding

We appreciate thoughtful comments by two reviewers. We appreciate laboratory and field assistance from L. Ebbs, J. Fitzgerald, T. Clawson, J. Nelson, J. Ahmed, and N. Nahid. We thank J.A. Perez for statistical consultation and field assistance, and W.G. Whitford, B. Bestelmeyer, and J. Anderson for helpful discussions. This work was supported by an NSF collaborative grant (DEB 0815808 to HT, DEB 0816162 to SA, DEB 0814461 to RM) and the Jornada Basin LTER (NSF DEB 0618210).

FundersFunder number
Jornada Basin LTERDEB 0618210
National Science Foundation (NSF)1235828, 0815808, 0816162, DEB 0816162, DEB 0815808, DEB 0814461

    Keywords

    • Prosopis
    • arid
    • carbon cycle
    • dryland
    • dust
    • erosion
    • livestock grazing
    • phospholipid fatty acids
    • shrub encroachment

    ASJC Scopus subject areas

    • Ecology, Evolution, Behavior and Systematics
    • Environmental Chemistry
    • Ecology

    Fingerprint

    Dive into the research topics of 'Soil-Litter Mixing Accelerates Decomposition in a Chihuahuan Desert Grassland'. Together they form a unique fingerprint.

    Cite this