Abstract
We prove that an additive form of degree d = 2m, m odd, m ≥ 3, over the unramified quadratic extension ℚ2(√5) has a nontrivial zero if the number of variables s satisifies s ≥ 4d+1. If 3 ∤ d, then there exists a nontrivial zero if s ≥3/2d + 1, this bound being optimal. We give examples of forms in 3d variables without a nontrivial zero in case that 3 | d.
Original language | English |
---|---|
Pages (from-to) | 293-309 |
Number of pages | 17 |
Journal | Journal de Theorie des Nombres de Bordeaux |
Volume | 36 |
Issue number | 1 |
DOIs | |
State | Published - 2024 |
Bibliographical note
Publisher Copyright:© Les auteurs, 2024.
Keywords
- additive forms
- Forms in many variables
- p-adic fields
- unramified extension
ASJC Scopus subject areas
- Algebra and Number Theory