Solubility of Additive Forms of Twice Odd Degree over Q2(5)

Drew Duncan, David B. Leep

Research output: Contribution to journalArticlepeer-review

Abstract

We prove that an additive form of degree d = 2m, m odd, m ≥ 3, over the unramified quadratic extension ℚ2(5) has a nontrivial zero if the number of variables s satisifies s ≥ 4d+1. If 3 ∤ d, then there exists a nontrivial zero if s ≥3/2d + 1, this bound being optimal. We give examples of forms in 3d variables without a nontrivial zero in case that 3 | d.

Original languageEnglish
Pages (from-to)293-309
Number of pages17
JournalJournal de Theorie des Nombres de Bordeaux
Volume36
Issue number1
DOIs
StatePublished - 2024

Bibliographical note

Publisher Copyright:
© Les auteurs, 2024.

Keywords

  • additive forms
  • Forms in many variables
  • p-adic fields
  • unramified extension

ASJC Scopus subject areas

  • Algebra and Number Theory

Fingerprint

Dive into the research topics of 'Solubility of Additive Forms of Twice Odd Degree over Q2(5)'. Together they form a unique fingerprint.

Cite this