Solutions to the fifth-order KP II equation scatter

Peter A. Perry, Camille Schuetz

Research output: Contribution to journalArticlepeer-review

Abstract

The fifth-order KP II equation describes dispersive long waves in two space dimensions. In this paper we show that solutions with small initial data scatter to solutions of the associated linear fifth-order equation. In particular, we establish the existence of nonlinear wave operators mapping the initial data to scattering asymptotes, and show that the nonlinear wave operators have inverses in a neighborhood of the origin. Our paper uses techniques developed for the third-order KP II equation by Hadac, Herr, and Koch.

Original languageEnglish
Article number045011
JournalNonlinearity
Volume38
Issue number4
DOIs
StatePublished - Apr 30 2025

Bibliographical note

Publisher Copyright:
© 2025 IOP Publishing Ltd & London Mathematical Society. All rights, including for text and data mining, AI training, and similar technologies, are reserved.

Keywords

  • 35B40
  • 35P25
  • 35Q53
  • 37L50
  • long-time asymptotics
  • nonlinear dispersive equations
  • scattering theory

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • General Physics and Astronomy
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Solutions to the fifth-order KP II equation scatter'. Together they form a unique fingerprint.

Cite this