TY - JOUR
T1 - Solvation energies of amino acid side chains and backbone in a family of host - Guest pentapeptides
AU - Wimley, William C.
AU - Creamer, Trevor P.
AU - White, Stephen H.
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 1996/4/23
Y1 - 1996/4/23
N2 - Octanol-to-water solvation free energies of acetyl amino acid amides (Ac-X-amides) [Fauchère, J. L., & Pliška, V. (1983) Eur. J. Med. Chem.-Chim. Ther. 18, 369] form the basis for computational comparisons of protein stabilities by means of the atomic solvation parameter formalism of Eisenberg and McLachlan [(1986) Nature 319, 199]. In order to explore this approach for more complex systems, we have determined by octanol-to-water partitioning the solvation energies of (1) the guest (X) side chains in the host-guest pentapeptides AcWL-X-LL, (2) the carboxy terminus of the pentapeptides, and (3) the peptide bonds of the homologous series of peptides AcWLm (m = 1-6). Solvation parameters were derived from the solvation energies using estimates of the solvent-accessible surface areas (ASA) obtained from hard-sphere Monte Carlo simulations. The measurements lead to a side chain solvation-energy scale for the pentapeptides and suggest the need for modifying the Asp, Glu, and Cys values of the "Fauchère-Pliška" solvation-energy scale for the Ac-X-amides. We find that the unfavorable solvation energy of nonpolar residues can be calculated accurately by a solvation parameter of 22.8 ± 0.8 cal/ mol/Å2, which agrees satisfactorily with the Ac-X-amide data and thereby validates the Monte Carlo ASA results. Unlike the Ac-X-amide data, the apparent solvation energies of the uncharged polar residues are also largely unfavorable. This unexpected finding probably results, primarily, from differences in conformation and hydrogen bonding in octanol and buffer but may also be due to the additional flanking peptide bonds of the pentapeptides. The atomic solvation parameter (ASP) for the peptide bond is comparable to the ASP of the charged carboxy terminus which is an order of magnitude larger than the ASP of the uncharged polar side chains of the Ac-X-amides. The very large peptide bond ASP. -96 ± 6 cal/mol/Å2, profoundly affects the results of computational comparisons of protein stability which use ASPs derived from octanol-water partitioning data.
AB - Octanol-to-water solvation free energies of acetyl amino acid amides (Ac-X-amides) [Fauchère, J. L., & Pliška, V. (1983) Eur. J. Med. Chem.-Chim. Ther. 18, 369] form the basis for computational comparisons of protein stabilities by means of the atomic solvation parameter formalism of Eisenberg and McLachlan [(1986) Nature 319, 199]. In order to explore this approach for more complex systems, we have determined by octanol-to-water partitioning the solvation energies of (1) the guest (X) side chains in the host-guest pentapeptides AcWL-X-LL, (2) the carboxy terminus of the pentapeptides, and (3) the peptide bonds of the homologous series of peptides AcWLm (m = 1-6). Solvation parameters were derived from the solvation energies using estimates of the solvent-accessible surface areas (ASA) obtained from hard-sphere Monte Carlo simulations. The measurements lead to a side chain solvation-energy scale for the pentapeptides and suggest the need for modifying the Asp, Glu, and Cys values of the "Fauchère-Pliška" solvation-energy scale for the Ac-X-amides. We find that the unfavorable solvation energy of nonpolar residues can be calculated accurately by a solvation parameter of 22.8 ± 0.8 cal/ mol/Å2, which agrees satisfactorily with the Ac-X-amide data and thereby validates the Monte Carlo ASA results. Unlike the Ac-X-amide data, the apparent solvation energies of the uncharged polar residues are also largely unfavorable. This unexpected finding probably results, primarily, from differences in conformation and hydrogen bonding in octanol and buffer but may also be due to the additional flanking peptide bonds of the pentapeptides. The atomic solvation parameter (ASP) for the peptide bond is comparable to the ASP of the charged carboxy terminus which is an order of magnitude larger than the ASP of the uncharged polar side chains of the Ac-X-amides. The very large peptide bond ASP. -96 ± 6 cal/mol/Å2, profoundly affects the results of computational comparisons of protein stability which use ASPs derived from octanol-water partitioning data.
UR - http://www.scopus.com/inward/record.url?scp=0030005250&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030005250&partnerID=8YFLogxK
U2 - 10.1021/bi9600153
DO - 10.1021/bi9600153
M3 - Article
C2 - 8611495
AN - SCOPUS:0030005250
SN - 0006-2960
VL - 35
SP - 5109
EP - 5124
JO - Biochemistry
JF - Biochemistry
IS - 16
ER -