Solvent-Free Manufacturing of Lithium-Ion Battery Electrodes via Cold Plasma

Zhiming Liang, Tianyi Li, Holden Chi, Joseph Ziegelbauer, Kai Sun, Ming Wang, Wei Zhang, Tuo Liu, Yang Tse Cheng, Zonghai Chen, Xiaohong Gayden, Chunmei Ban

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Slurry casting has been used to fabricate lithium-ion battery electrodes for decades, which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering. This work presents a new manufacturing method using a nonthermal plasma to create inter-particle binding without using any polymeric binding materials, enabling solvent-free manufacturing electrodes with any electrochemistry of choice. The cold-plasma-coating technique enables fabricating electrodes with thickness (>200 μm), high mass loading (>30 mg cm−2), high peel strength, and the ability to print lithium-ion batteries in an arbitrary geometry. This crosscutting, chemistry agnostic, platform technology would increase energy density, eliminate the use of solvents, vacuum drying, and calendering processes during production, and reduce manufacturing cost for current and future cell designs. Here, lithium iron phosphate and lithium cobalt oxide were used as examples to demonstrate the efficacy of the cold-plasma-coating technique. It is found that the mechanical peel strength of cold-plasma-coating-manufactured lithium iron phosphate is over an order of magnitude higher than that of slurry-casted lithium iron phosphate electrodes. Full cells assembled with a graphite anode and the cold-plasma-coating-lithium iron phosphate cathode offer highly reversible cycling performance with a capacity retention of 81.6% over 500 cycles. For the highly conductive cathode material lithium cobalt oxide, an areal capacity of 4.2 mAh cm−2 at 0.2 C is attained. We anticipate that this new, highly scalable manufacturing technique will redefine global lithium-ion battery manufacturing providing significantly reduced plant footprints and material costs.

Original languageEnglish
Article numbere12503
JournalEnergy and Environmental Materials
Volume7
Issue number1
DOIs
StatePublished - Jan 2024

Bibliographical note

Publisher Copyright:
© 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

Keywords

  • cold plasma deposition
  • lithium-ion battery
  • solvent-free manufacturing

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • General Materials Science
  • Water Science and Technology
  • Environmental Science (miscellaneous)
  • Waste Management and Disposal
  • Energy (miscellaneous)

Fingerprint

Dive into the research topics of 'Solvent-Free Manufacturing of Lithium-Ion Battery Electrodes via Cold Plasma'. Together they form a unique fingerprint.

Cite this