Spatial and temporal characteristics of OH in turbulent opposed-jet double flames

Krishna K. Venkatesan, Galen B. King, Normand M. Laurendeau, Michael W. Renfro, Benjamin Böhm

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Simultaneous high repetition-rate, two-point hydroxyl (OH) time-series measurements with associated PLIF/PIV measurements are employed to investigate spatio-temporal scales and flame-velocity interactions in turbulent opposed jets sustaining methane-air double flames. For a fuel-side equivalence ratio, φ B ∈=∈1.2, a rich premixed flame exists on the fuel side while a diffusion flame exists on the air side of the stagnation plane. The bulk Reynolds number (Re) and strain rate (SR) can be adjusted to generate flames at φ B ∈=∈1.2 with both well separated and completely merged flame fronts. Simultaneous PLIF/PIV measurements highlight distinct spatial OH structures of the premixed and diffusive fronts corresponding to variations in the flow field. The self-propagating tendency of the rich premixed front causes large-scale wrinkling, thereby enhancing the OH contour length by 15% as compared to the diffusive front. Two-point OH time-series measurements are implemented to quantify both spatial and temporal fluctuations via study of radial length and time scales. In general, these integral length and time scales follow similar trends and reach a minimum at the axial location of peak [OH]. In comparison to merged double flames having higher Re and SR, greater OH fluctuations are observed in the rich-premixed front as compared to the diffusive front for a well separated double flame. Because of the developing turbulence, the OH length scales exhibit reduced axial gradients across the reaction zone for higher Re in comparison to lower Re. A stochastic time-series simulation, using a state relationship based on a joint mixture fraction and progress variable, is utilized to extract estimated scalar time scales from those of measured OH. The simulations indicate that the hydroxyl fluctuations in double flames are only twice those of the underlying conserved scalar.

Original languageEnglish
Pages (from-to)131-152
Number of pages22
JournalFlow, Turbulence and Combustion
Volume83
Issue number1
DOIs
StatePublished - Jul 2009

Bibliographical note

Funding Information:
Acknowledgements This project was supported by the National Science Foundation and by Deutsche Forschungsgemeinschaft. We thank Dr. Robert Barlow for providing the opposed-jet burner used at Purdue University. We also express our thanks to Dr. Andreas Dreizler and Dr. Dirk Geyer for their fruitful insights and valuable suggestions.

Funding

Acknowledgements This project was supported by the National Science Foundation and by Deutsche Forschungsgemeinschaft. We thank Dr. Robert Barlow for providing the opposed-jet burner used at Purdue University. We also express our thanks to Dr. Andreas Dreizler and Dr. Dirk Geyer for their fruitful insights and valuable suggestions.

FundersFunder number
National Science Foundation (NSF)
Deutsche Forschungsgemeinschaft

    Keywords

    • Double flames
    • Integral length scale
    • Turbulent opposed-jet
    • Two-point time-series

    ASJC Scopus subject areas

    • General Chemical Engineering
    • General Physics and Astronomy
    • Physical and Theoretical Chemistry

    Fingerprint

    Dive into the research topics of 'Spatial and temporal characteristics of OH in turbulent opposed-jet double flames'. Together they form a unique fingerprint.

    Cite this