Spatial positioning and operating parameters of a rotary bell sprayer: 3D mapping of droplet size distributions

Adnan Darwish Ahmad, Binit B. Singh, Mark Doerre, Ahmad M. Abubaker, Masoud Arabghahestani, Ahmad A. Salaimeh, Nelson K. Akafuah

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

In this study, we evaluated the fundamental physical behavior during droplet formation and flow from a rotary bell spray in the absence of an electrostatic field. The impact of a wide range of operating parameters of the rotary bell sprayer, such as flow rates, rotational speeds, and spatial positioning, on droplet sizes and size distributions using a three-dimensional (3-D) mapping was studied. The results showed that increasing the rotational speed caused the Sauter mean diameter of the droplets to decrease while increasing flow rate increased the droplet sizes. The rotational speed effect, however, was dominant compared to the effect of flow rate. An increase in droplet size radially away from the cup was noted in the vicinity of the cup, nevertheless, as the lateral distances from the cup and rotational speed were increased, the droplet sizes within the flow field became more uniform. This result is of importance for painting industries, which are looking for optimal target distances for uniform painting appearance. Furthermore, the theoretical formulation was validated with experimental data, which provides a wider range of applicability in terms of environment and parameters that could be tested. This work also provides an abundance of measurements, which can serve as a database for the validation of future droplet disintegration simulations.

Original languageEnglish
Article number165
JournalFluids
Volume4
Issue number3
DOIs
StatePublished - Sep 5 2019

Bibliographical note

Publisher Copyright:
© 2019 by the authors.

Funding

Funding: This research was funded internally by the University of Kentucky, Institute of Research for Technology Development (IR4TD). This research was funded internally by the University of Kentucky, Institute of Research for Technology Development (IR4TD). The authors would like to thank DURR, USA for the Eco-Bell 2 donation, and John Stencel for his comments and help with the article.

FundersFunder number
Institute for Development and Research in Banking Technology
University of Kentucky
Institute of Research and Development, Rajamangala University of Technology ThanyaburiIR4TD

    Keywords

    • Atomization
    • Droplet size distribution
    • Laser diffraction
    • Paint appearance
    • Rotary bell
    • Spray

    ASJC Scopus subject areas

    • Condensed Matter Physics
    • Mechanical Engineering
    • Fluid Flow and Transfer Processes

    Fingerprint

    Dive into the research topics of 'Spatial positioning and operating parameters of a rotary bell sprayer: 3D mapping of droplet size distributions'. Together they form a unique fingerprint.

    Cite this