Speech recognition using reconstructed phase space features

Andrew C. Lindgren, Michael T. Johnson, Richard J. Povinelli

Research output: Contribution to journalConference articlepeer-review

40 Scopus citations


This paper presents a novel method for speech recognition by utilizing nonlinear/chaotic signal processing techniques to extract time-domain based phase space features. By exploiting the theoretical results derived in nonlinear dynamics, a processing space called a reconstructed phase space can be generated where a salient model (the natural distribution of the attractor) can be extracted for speech recognition. To discover the discriminatory power of these features, isolated phoneme classification experiments were performed using the TIMIT corpus and compared to a baseline classifier that uses MFCC features. The results demonstrate that phase space features contain substantial discriminatory power, even though MFCC features outperformed the phase space features on direct comparisons. The authors conjecture that phase space and MFCC features used in combination within a classifier will yield increased accuracy for various speech recognition tasks.

Original languageEnglish
Pages (from-to)60-63
Number of pages4
JournalICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
StatePublished - 2003
Event2003 IEEE International Conference on Accoustics, Speech, and Signal Processing - Hong Kong, Hong Kong
Duration: Apr 6 2003Apr 10 2003

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering


Dive into the research topics of 'Speech recognition using reconstructed phase space features'. Together they form a unique fingerprint.

Cite this