TY - JOUR
T1 - Stable Cu (I) Complexes for Intracellular Cu-Catalyzed Azide Alkyne Cycloaddition
AU - Olivelli, Alexander
AU - Olelewe, Chibuzor
AU - Wolff, Levi G.
AU - Parkin, Sean
AU - Edwin Webster, Charles
AU - Awuah, Samuel G.
AU - Huckaba, Aron J.
N1 - Publisher Copyright:
© 2024 Wiley-VCH GmbH.
PY - 2024/12/23
Y1 - 2024/12/23
N2 - The copper-catalyzed azide-alkyne cycloaddition (CuAAC) has heralded a new era of chemical biology and biomedicine. However, caveats of the CuAAC include formation of reactive oxygen species (ROS) and other copper-related toxicity. This limits utility in sensitive biological samples and matrices. Towards addressing these caveats, we synthesized and fully characterized two air and water stable trinuclear Cu(I) dimer complexes. The complexes were stable to oxidation in the presence of hydrogen peroxideand other chelators, which was reasoned to be due to the linear benzimidazole-Cu-benzimidazole geometry. Computational investigations of the catalytic cycle implicated two of the three coppers in the trimer complex as the active metal centers. The complexes were shown to catalyze the reaction at far below sub-toxic concentrations for intracellular click reactions to label triple negative breast cancer cells and compared to the current CuSO4-THPTA standard.
AB - The copper-catalyzed azide-alkyne cycloaddition (CuAAC) has heralded a new era of chemical biology and biomedicine. However, caveats of the CuAAC include formation of reactive oxygen species (ROS) and other copper-related toxicity. This limits utility in sensitive biological samples and matrices. Towards addressing these caveats, we synthesized and fully characterized two air and water stable trinuclear Cu(I) dimer complexes. The complexes were stable to oxidation in the presence of hydrogen peroxideand other chelators, which was reasoned to be due to the linear benzimidazole-Cu-benzimidazole geometry. Computational investigations of the catalytic cycle implicated two of the three coppers in the trimer complex as the active metal centers. The complexes were shown to catalyze the reaction at far below sub-toxic concentrations for intracellular click reactions to label triple negative breast cancer cells and compared to the current CuSO4-THPTA standard.
KW - Bioorthogonal Chemistry
KW - Click Chemistry
KW - Linear Cu (I)
KW - Stable Cu (I) Complexes
UR - http://www.scopus.com/inward/record.url?scp=85209663164&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85209663164&partnerID=8YFLogxK
U2 - 10.1002/chem.202402887
DO - 10.1002/chem.202402887
M3 - Article
C2 - 39417796
AN - SCOPUS:85209663164
SN - 0947-6539
VL - 30
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 72
M1 - e202402887
ER -