Stable isotope and chemical systematics of pseudotachylyte and wall rock, Homestake shear zone, Colorado, USA: Meteoric fluid or rock-buffered conditions during coseismic fusion?

David P. Moecher, Zachary D. Sharp

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

A hydrous fluid phase is critical in controlling effective stress and fault mechanics, and influencing the mineralogy and strength of materials within fault zones. Oxygen and hydrogen isotope and chemical analysis of wall rock gneiss, pseudotachylyte, and selected minerals in gneiss and pseudotachylyte from the Homestake shear zone was used to assess whether melting occurred in the presence of meteoric water or involved only minor amounts of H2O derived from micas in wall rock gneiss. Bulk pseudotachylyte has slightly lower δ 18OSMOW than the whole rock protolith. δD for one bulk pseudotachylyte is essentially identical to biotite in gneiss; δD for two samples is lower by ∼20‰. Bulk pseudotachylyte has lower SiO2 and K2O, and higher Al2O3, FeO, MgO, CaO, and H2O, than gneiss. The lower SiO2 of pseudotachylyte compared to gneiss is explained by physical segregation of 25 to 72 volume % of quartz clasts from the mobile melt phase. Samples of gneiss and pseudotachylyte define a SiO218O mixing line between quartz and the most SiO2- and 18O-depleted pseudotachylyte. Physical segregation of quartz (highest oxygen isotope composition in the pseudotachylyte-gneiss system) accounts for the slightly lower oxygen isotope composition of bulk pseudotachylyte relative to gneiss. The similar δD of pseudotachylyte and biotite from gneiss in one sample is consistent with dehydration melting of biotite during frictional heating and dissolution of biotite-derived H2O in the melt. Late devitrification of glass and formation of greater amounts of fine-grained muscovite, accompanied by 10-30% loss of hydrogen as H2O, results in lower δD values in other samples. In general, melt generation occurred in a fault zone closed to infiltration of meteoric water. There was no free, H2O-rich pore fluid present at the time of slip to potentially influence the behavior of the fault.

Original languageEnglish
Article numberB12206
Pages (from-to)1-11
Number of pages11
JournalJournal of Geophysical Research: Solid Earth
Volume109
Issue number12
DOIs
StatePublished - Dec 10 2004

Keywords

  • 1020 Geochemistry: Composition of the crust
  • 1040 Geochemistry: Isotopic composition/chemistry
  • 1045 Geochemistry: Low-temperature geochemistry
  • 1065 Geochemistry: Trace elements (3670)

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Stable isotope and chemical systematics of pseudotachylyte and wall rock, Homestake shear zone, Colorado, USA: Meteoric fluid or rock-buffered conditions during coseismic fusion?'. Together they form a unique fingerprint.

Cite this