TY - JOUR
T1 - Stephanodiscus coruscus sp. nov., a new species of diatom (Bacillariophyta) from June Lake, California (USA) with close affiliation to Stephanodiscus klamathensis
AU - Stone, Jeffery R.
AU - Edlund, Mark B.
AU - Streib, Laura
AU - Ha Quang, Hung
AU - McGlue, Michael M.
N1 - Publisher Copyright:
© 2020 The International Society for Diatom Research.
PY - 2020
Y1 - 2020
N2 - Modern and fossil populations of a Stephanodiscus Ehrenberg species from June Lake, California (USA) were analysed using light and scanning electron microscopy (SEM). Stephanodiscus valves were a major constituent of almost all analysed samples, often dominating fossil assemblages dating back several thousand years. The most commonly observed Stephanodiscus specimen in the samples bore a striking resemblance to the extinct Late Pliocene species Stephanodiscus klamathensis, particularly under light microscopy. The population size range, ultrastructure, and other defining characteristics closely matched published information on S. klamathensis. However, under SEM, internal views of the specimens from June Lake showed an important difference; specimens lacked valve face fultoportulae, whereas S. klamathensis is characterized by the presence of two valve face fultoportulae, each with three satellite pores near the centre of the valve. Additional differences in valve size range, absence of fultoportulae on the valve face, and the fact that S. klamathensis is an extinct species (observed in diatomites deposited from Late Pliocene to Pleistocene) with no closely related living relatives, necessitates describing this Stephanodiscus as a new species. To date, Stephanodiscus coruscus has been observed only in June Lake, California; most Stephanodiscus that share strong morphological similarities to this species have only been observed in ancient fossil diatomites. Thus, Stephanodiscus coruscus Jeff. R. Stone, Edlund & Streib sp. nov. is not only a new species but also provides a rare glimpse into the likely types of environments that S. klamathensis and other similar ancient Stephanodiscus may have inhabited in the late Pliocene. Character variations between S. coruscus and S. klamathensis reveal potential patterns of evolution in freshwater lineages, such as character loss, over time.
AB - Modern and fossil populations of a Stephanodiscus Ehrenberg species from June Lake, California (USA) were analysed using light and scanning electron microscopy (SEM). Stephanodiscus valves were a major constituent of almost all analysed samples, often dominating fossil assemblages dating back several thousand years. The most commonly observed Stephanodiscus specimen in the samples bore a striking resemblance to the extinct Late Pliocene species Stephanodiscus klamathensis, particularly under light microscopy. The population size range, ultrastructure, and other defining characteristics closely matched published information on S. klamathensis. However, under SEM, internal views of the specimens from June Lake showed an important difference; specimens lacked valve face fultoportulae, whereas S. klamathensis is characterized by the presence of two valve face fultoportulae, each with three satellite pores near the centre of the valve. Additional differences in valve size range, absence of fultoportulae on the valve face, and the fact that S. klamathensis is an extinct species (observed in diatomites deposited from Late Pliocene to Pleistocene) with no closely related living relatives, necessitates describing this Stephanodiscus as a new species. To date, Stephanodiscus coruscus has been observed only in June Lake, California; most Stephanodiscus that share strong morphological similarities to this species have only been observed in ancient fossil diatomites. Thus, Stephanodiscus coruscus Jeff. R. Stone, Edlund & Streib sp. nov. is not only a new species but also provides a rare glimpse into the likely types of environments that S. klamathensis and other similar ancient Stephanodiscus may have inhabited in the late Pliocene. Character variations between S. coruscus and S. klamathensis reveal potential patterns of evolution in freshwater lineages, such as character loss, over time.
KW - Mono Basin
KW - Praestephanos
KW - Stephanodiscaceae
KW - fossil
KW - morphometric analyses
KW - paleolimnology
KW - southwestern USA
KW - taxonomy
UR - http://www.scopus.com/inward/record.url?scp=85097416978&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097416978&partnerID=8YFLogxK
U2 - 10.1080/0269249X.2020.1846079
DO - 10.1080/0269249X.2020.1846079
M3 - Article
AN - SCOPUS:85097416978
SN - 0269-249X
VL - 35
SP - 339
EP - 351
JO - Diatom Research
JF - Diatom Research
IS - 4
ER -