Steroid binding to Autotaxin links bile salts and lysophosphatidic acid signalling

Willem Jan Keune, Jens Hausmann, Ruth Bolier, Dagmar Tolenaars, Andreas Kremer, Tatjana Heidebrecht, Robbie P. Joosten, Manjula Sunkara, Andrew J. Morris, Elisa Matas-Rico, Wouter H. Moolenaar, Ronald P. Oude Elferink, Anastassis Perrakis

Research output: Contribution to journalArticlepeer-review

63 Scopus citations


Autotaxin (ATX) generates the lipid mediator lysophosphatidic acid (LPA). ATX-LPA signalling is involved in multiple biological and pathophysiological processes, including vasculogenesis, fibrosis, cholestatic pruritus and tumour progression. ATX has a tripartite active site, combining a hydrophilic groove, a hydrophobic lipid-binding pocket and a tunnel of unclear function. We present crystal structures of rat ATX bound to 7α-hydroxycholesterol and the bile salt tauroursodeoxycholate (TUDCA), showing how the tunnel selectively binds steroids. A structure of ATX simultaneously harbouring TUDCA in the tunnel and LPA in the pocket, together with kinetic analysis, reveals that bile salts act as partial non-competitive inhibitors of ATX, thereby attenuating LPA receptor activation. This unexpected interplay between ATX-LPA signalling and select steroids, notably natural bile salts, provides a molecular basis for the emerging association of ATX with disorders associated with increased circulating levels of bile salts. Furthermore, our findings suggest potential clinical implications in the use of steroid drugs.

Original languageEnglish
Article number11248
JournalNature Communications
StatePublished - Apr 14 2016

ASJC Scopus subject areas

  • Chemistry (all)
  • Biochemistry, Genetics and Molecular Biology (all)
  • Physics and Astronomy (all)


Dive into the research topics of 'Steroid binding to Autotaxin links bile salts and lysophosphatidic acid signalling'. Together they form a unique fingerprint.

Cite this