Structural Equivalence: Meaning and Measures

Stephen P. Borgatti, Travis J. Grosser

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

14 Scopus citations

Abstract

In social network analysis, two nodes are considered structurally equivalent if they have the same neighborhoods - that is, they are connected to the same others. Initially introduced as a convenience for creating reduced models of networks, it was soon seen as a way to formalize the concept of relational role or position. To the extent that characteristics of nodes are shaped by their social environments, we expect structurally equivalent nodes to develop similar characteristics. Structural equivalence has been used to explain similarities in beliefs and attitudes, the adoption of innovation, the evolution of interfirm networks, political affiliation, the structure of trade among nations, and the effects of technology change.

Original languageEnglish
Title of host publicationInternational Encyclopedia of the Social & Behavioral Sciences: Second Edition
Pages621-625
Number of pages5
ISBN (Electronic)9780080970875
DOIs
StatePublished - Mar 26 2015

Bibliographical note

Publisher Copyright:
© 2015 Elsevier Ltd. All rights reserved.

Keywords

  • Blockmodeling
  • Clustering
  • Cohesion
  • Graph theory
  • Homomorphism
  • Isomorphism
  • Position
  • Regular equivalence
  • Role
  • Similarity
  • Social homogeneity
  • Social networks

ASJC Scopus subject areas

  • General Social Sciences

Fingerprint

Dive into the research topics of 'Structural Equivalence: Meaning and Measures'. Together they form a unique fingerprint.

Cite this