TY - JOUR
T1 - Structure and feedback in 30 Doradus. II. Structure and chemical abundances
AU - Pellegrini, E. W.
AU - Baldwin, J. A.
AU - Ferland, G. J.
PY - 2011/9/1
Y1 - 2011/9/1
N2 - We use our new optical-imaging and spectrophotometric survey of key diagnostic emission lines in 30Doradus, together with CLOUDY photoionization models, to study the physical conditions and ionization mechanisms along over 4000 individual lines of sight at points spread across the face of the extended nebula, out to a projected radius 75pc from R136 at the center of the ionizing cluster NGC2070. We focus on the physical conditions, geometry, and importance of radiation pressure on a point-by-point basis, with the aim of setting observational constraints on important feedback processes. We find that the dynamics and large-scale structure of 30Dor are set by a confined system of X-ray bubbles in rough pressure equilibrium with each other and with the confining molecular gas. Although the warm (10,000K) gas is photoionized by the massive young stars in NGC2070, the radiation pressure does not currently play a major role in shaping the overall structure. The completeness of our survey also allows us to create a composite spectrum of 30Doradus, simulating the observable spectrum of a spatially unresolved, distant giant extragalactic H II region. We find that the highly simplified models used in the "strong line" abundance technique do in fact reproduce our observed line strengths and deduced chemical abundances, in spite of the more than one order of magnitude range in the ionization parameter and density of the actual gas in 30Dor.
AB - We use our new optical-imaging and spectrophotometric survey of key diagnostic emission lines in 30Doradus, together with CLOUDY photoionization models, to study the physical conditions and ionization mechanisms along over 4000 individual lines of sight at points spread across the face of the extended nebula, out to a projected radius 75pc from R136 at the center of the ionizing cluster NGC2070. We focus on the physical conditions, geometry, and importance of radiation pressure on a point-by-point basis, with the aim of setting observational constraints on important feedback processes. We find that the dynamics and large-scale structure of 30Dor are set by a confined system of X-ray bubbles in rough pressure equilibrium with each other and with the confining molecular gas. Although the warm (10,000K) gas is photoionized by the massive young stars in NGC2070, the radiation pressure does not currently play a major role in shaping the overall structure. The completeness of our survey also allows us to create a composite spectrum of 30Doradus, simulating the observable spectrum of a spatially unresolved, distant giant extragalactic H II region. We find that the highly simplified models used in the "strong line" abundance technique do in fact reproduce our observed line strengths and deduced chemical abundances, in spite of the more than one order of magnitude range in the ionization parameter and density of the actual gas in 30Dor.
KW - HII regions
KW - ISM: individual objects (30 Doradus)
KW - ISM: structure
UR - http://www.scopus.com/inward/record.url?scp=80052727644&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052727644&partnerID=8YFLogxK
U2 - 10.1088/0004-637X/738/1/34
DO - 10.1088/0004-637X/738/1/34
M3 - Article
AN - SCOPUS:80052727644
SN - 0004-637X
VL - 738
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 34
ER -