Subpixel alignment for scanning-beam lithography using one-dimensional, phase-based mark detection

A. V. Krishnamurthy, R. V. Namepalli, J. T. Hastings

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

A phase-based alignment technique for scanning electron-beam lithography is proposed and evaluated. The approach uses a grid alignment mark rotated with respect to the beam deflection axes and requires only a single, one-dimensional (1D) line scan to perform subpixel registration in both the x and y directions. This 1D, phase-based method promises subpixel alignment without interpolation, faster mark signal acquisition, and more computationally efficient detection. Theoretical limits for alignment accuracy and a simple phase-estimation algorithm that approaches these limits are described. Monte Carlo simulations indicate that nanometer-level registration precision can be achieved with modest grid periods and signal to noise ratios (SNRs). Experimental measurements of registration variance as a function of SNR agree well with both theory and simulation. Registration errors of 3 nm (1-standard deviation) are observed using a 1 μm grid period, 49 nm pixel size, and the highest observed SNR of 5.9.

Original languageEnglish
Pages (from-to)3037-3042
Number of pages6
JournalJournal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
Volume23
Issue number6
DOIs
StatePublished - Nov 2005

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Subpixel alignment for scanning-beam lithography using one-dimensional, phase-based mark detection'. Together they form a unique fingerprint.

Cite this