Abstract
We study subsystem entropies in 2d CFTs for subsystems constituting a finite fraction of the full system. We focus on the extensive contribution, which scales linearly with the subsystem size in the thermodynamic limit. We employ the so-called diagonal approximation to evaluate subsystem entropy for chaotic CFTs in the thermal state (canonical ensemble), the microcanonical ensemble, and in a primary state, matching previously known results. We then proceed to find analytic expressions for the subsystem entropy at leading order in c, when the global CFT state is the KdV-generalized Gibbs ensemble or the KdV-microcanonical ensemble. Previous studies of primary eigenstates have shown that, akin to the fixed-area states in AdS/CFT, the corresponding subsystem entanglement spectrum is flat. This behavior is seemingly in sharp contradiction with that of the thermal (microcanonical) state, and thus in apparent contradiction with the subsystem eigenstate thermalization hypothesis (ETH). In this paper, we resolve this issue by comparing the primary state with the KdV-(micro)canonical ensemble. We show that the results are consistent with the KdV-generalized version of the subsystem ETH, in which local properties of quantum eigenstates are governed by their values of conserved KdV charges. Our paper solidifies evidence for the KdV-generalized ETH in 2d CFTs and emphasizes Rényi entropy as a sensitive probe of the reduced-density matrix.
Original language | English |
---|---|
Article number | 023121 |
Journal | Physical Review Research |
Volume | 7 |
Issue number | 2 |
DOIs | |
State | Published - Apr 2025 |
Bibliographical note
Publisher Copyright:© 2025 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
ASJC Scopus subject areas
- General Physics and Astronomy