TY - GEN
T1 - Sufficient conditions for generating group level sparsity in a robust minimax framework
AU - Zhou, Hongbo
AU - Cheng, Qiang
PY - 2010
Y1 - 2010
N2 - Regularization technique has become a principled tool for statistics and machine learning research and practice. However, in most situations, these regularization terms are not well interpreted, especially on how they are related to the loss function and data. In this paper, we propose a robust minimax framework to interpret the relationship between data and regularization terms for a large class of loss functions. We show that various regularization terms are essentially corresponding to different distortions to the original data matrix. This minimax framework includes ridge regression, lasso, elastic net, fused lasso, group lasso, local coordinate coding, multiple kernel learning, etc., as special cases. Within this minimax framework, we further give mathematically exact definition for a novel representation called sparse grouping representation (SGR), and prove a set of sufficient conditions for generating such group level sparsity. Under these sufficient conditions, a large set of consistent regularization terms can be designed. This SGR is essentially different from group lasso in the way of using class or group information, and it outperforms group lasso when there appears group label noise. We also provide some generalization bounds in a classification setting.
AB - Regularization technique has become a principled tool for statistics and machine learning research and practice. However, in most situations, these regularization terms are not well interpreted, especially on how they are related to the loss function and data. In this paper, we propose a robust minimax framework to interpret the relationship between data and regularization terms for a large class of loss functions. We show that various regularization terms are essentially corresponding to different distortions to the original data matrix. This minimax framework includes ridge regression, lasso, elastic net, fused lasso, group lasso, local coordinate coding, multiple kernel learning, etc., as special cases. Within this minimax framework, we further give mathematically exact definition for a novel representation called sparse grouping representation (SGR), and prove a set of sufficient conditions for generating such group level sparsity. Under these sufficient conditions, a large set of consistent regularization terms can be designed. This SGR is essentially different from group lasso in the way of using class or group information, and it outperforms group lasso when there appears group label noise. We also provide some generalization bounds in a classification setting.
UR - http://www.scopus.com/inward/record.url?scp=85162066179&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85162066179&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85162066179
SN - 9781617823800
T3 - Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
BT - Advances in Neural Information Processing Systems 23
T2 - 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
Y2 - 6 December 2010 through 9 December 2010
ER -