Suppressing star formation in quiescent galaxies with supermassive black hole winds

Edmond Cheung, Kevin Bundy, Michele Cappellari, Sébastien Peirani, Wiphu Rujopakarn, Kyle Westfall, Renbin Yan, Matthew Bershady, Jenny E. Greene, Timothy M. Heckman, Niv Drory, David R. Law, Karen L. Masters, Daniel Thomas, David A. Wake, Anne Marie Weijmans, Kate Rubin, Francesco Belfiore, Benedetta Vulcani, Yan Mei ChenKai Zhang, Joseph D. Gelfand, Dmitry Bizyaev, A. Roman-Lopes, Donald P. Schneider

Research output: Contribution to journalArticlepeer-review

154 Scopus citations

Abstract

Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 10 10 times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1, 2, 3, 4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss or mergers and that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 10 10 times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxyâ(tm) s low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.

Original languageEnglish
Pages (from-to)504-508
Number of pages5
JournalNature
Volume533
Issue number7604
DOIs
StatePublished - May 25 2016

Bibliographical note

Funding Information:
We are grateful to Y.-Y. Chang for checks on the SED fitting and implied SFR. We thank S. Juneau, J. Newman, H. Fu, K. Nyland, and S. F. Sánchez for discussions and comments. This work was supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and JSPS KAKENHI grant no. 15K17603. A.W. acknowledges support of a Leverhulme Trust Early Career Fellowship. S.P. acknowledges support from the Japan Society for the Promotion of Science (JSPS long-term invitation fellowship). M.C. acknowledges support from a Royal Society University Research Fellowship. W.R. is supported by a CUniverse Grant (CUAASC) from Chulalongkorn University. Funding for the Sloan Digital Sky Survey IV (SDSS-VI) has been provided by the Alfred P. Sloan Foundation, the US Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS website is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration, including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatory of China, New Mexico State University, New York University, University of Notre Dame, Observatório Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, UK Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University and Yale University.

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Suppressing star formation in quiescent galaxies with supermassive black hole winds'. Together they form a unique fingerprint.

Cite this