Abstract
Surface ligand treatment provides a promising approach for passivating defect states, improving material and device stability, manipulating interfacial energetics, and improving the performance of perovskite solar cells (PSCs). To facilitate targeted selection and design of surface ligands for PSCs, it is necessary to establish relationships between ligand structure and perovskite surface properties. Herein, surface ligands with different binding groups are investigated to determine their extent of surface coverage, whether they form a surface monolayer or penetrate the perovskite, how they influence material energetics and photoluminescence, and how this combination of factors affects PSC performance. Ultraviolet and inverse photoelectron spectroscopy measurements show that surface ligands can significantly shift the ionization energy and electron affinity. These changes in surface energetics substantially impact PSC performance, with the performance decreasing for ligands that create less favorable energy landscapes for electron transfer from MAPbI3 to the electron transport layer, C60.
Original language | English |
---|---|
Pages (from-to) | 799-806 |
Number of pages | 8 |
Journal | ACS Energy Letters |
Volume | 5 |
Issue number | 3 |
DOIs | |
State | Published - Mar 13 2020 |
Bibliographical note
Publisher Copyright:Copyright © 2020 American Chemical Society.
ASJC Scopus subject areas
- Chemistry (miscellaneous)
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Energy Engineering and Power Technology
- Materials Chemistry