TY - JOUR
T1 - Systematic Investigation of Electronic States and Bond Properties of LnO, LnO+, LnS, and LnS+ (Ln = La-Lu) by Spin-Orbit Multiconfiguration Perturbation Theory
AU - Nakamura, Taiji
AU - Schoendorff, George
AU - Yang, Dong Sheng
AU - Gordon, Mark S.
N1 - Publisher Copyright:
© 2024 American Chemical Society.
PY - 2025/1/14
Y1 - 2025/1/14
N2 - The electronic structures of lanthanide monoxides (LnO/LnO+) and monosulfides (LnS/LnS+) for all lanthanide series elements (Ln = La-Lu) have been systematically analyzed with sophisticated quantum chemical calculations. The ground electronic configuration has been determined to be Ln 4fn6s1 or 4fn+1 for the neutral molecules and Ln 4fn for the cations. The low-lying energy states resulting from spin-orbit coupling and ligand field effects have been resolved using spin-orbit multiconfiguration quasi-degenerate second-order perturbation theory calculations. The ionization energies of LnO (5.20-7.06 eV) are about 0.3-2.2 eV lower than those of LnS (5.54-9.22 eV) due to the difference in the Ln 6s and 4f orbital energies from which an electron is removed during the ionization process. The bond dissociation energies (BDEs) have been computed by the state-averaged general multiconfigurational perturbation theory and the completely renormalized coupled-cluster [CR-CC(2,3)] methods. The BDEs are highly dependent on the lanthanide elements as several factors of the lanthanides affect the bond dissociation. The calculated bond lengths and energies agree well with available experimental values and are systematically predicted for the series of lanthanide monoxides and monosulfides where experimental values are not available. Furthermore, the LS terms of low-lying energy states and their corresponding bond properties have been clarified in detail to systematize the similarities and differences of the lanthanide compounds.
AB - The electronic structures of lanthanide monoxides (LnO/LnO+) and monosulfides (LnS/LnS+) for all lanthanide series elements (Ln = La-Lu) have been systematically analyzed with sophisticated quantum chemical calculations. The ground electronic configuration has been determined to be Ln 4fn6s1 or 4fn+1 for the neutral molecules and Ln 4fn for the cations. The low-lying energy states resulting from spin-orbit coupling and ligand field effects have been resolved using spin-orbit multiconfiguration quasi-degenerate second-order perturbation theory calculations. The ionization energies of LnO (5.20-7.06 eV) are about 0.3-2.2 eV lower than those of LnS (5.54-9.22 eV) due to the difference in the Ln 6s and 4f orbital energies from which an electron is removed during the ionization process. The bond dissociation energies (BDEs) have been computed by the state-averaged general multiconfigurational perturbation theory and the completely renormalized coupled-cluster [CR-CC(2,3)] methods. The BDEs are highly dependent on the lanthanide elements as several factors of the lanthanides affect the bond dissociation. The calculated bond lengths and energies agree well with available experimental values and are systematically predicted for the series of lanthanide monoxides and monosulfides where experimental values are not available. Furthermore, the LS terms of low-lying energy states and their corresponding bond properties have been clarified in detail to systematize the similarities and differences of the lanthanide compounds.
UR - http://www.scopus.com/inward/record.url?scp=85212615353&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85212615353&partnerID=8YFLogxK
U2 - 10.1021/acs.jctc.4c01196
DO - 10.1021/acs.jctc.4c01196
M3 - Article
C2 - 39693604
AN - SCOPUS:85212615353
SN - 1549-9618
VL - 21
SP - 267
EP - 282
JO - Journal of Chemical Theory and Computation
JF - Journal of Chemical Theory and Computation
IS - 1
ER -