Targeted chemical wedges reveal the role of allosteric DNA modulation in protein - DNA assembly

Rocco Moretti, Leslie J. Donato, Mary L. Brezinski, Ryan L. Stafford, Helena Hoff, Jon S. Thorson, Peter B. Dervan, Aseem Z. Ansari

Research output: Contribution to journalArticlepeer-review

40 Scopus citations


The cooperative assembly of multiprotein complexes results from allosteric modulations of DNA structure as well as direct intermolecular contacts between proteins. Such cooperative binding plays a critical role in imparting exquisite sequence specificity on the homeobox transcription factor (Hox) family of developmental transcription factors. A well-characterized example includes the interaction of Hox proteins with extradenticle (Exd), a highly conserved DNA binding transcription factor. Although direct interactions are important, the contribution of indirect interactions toward cooperative assembly of Hox and Exd remains unresolved. Here we use minor groove binding polyamides as structural wedges to induce perturbations at specific base steps within the Exd binding site. We find that allosteric modulation of DNA structure contributes nearly 1.5 kcal/mol to the binding of Exd to DNA, even in the absence of direct Hox contacts. In contrast to previous studies, the sequence-targeted chemical wedges reveal the role of DNA geometry in cooperative assembly of Hox - Exd complexes. Programmable polyamides may well serve as general probes to investigate the role of DNA modulation in the cooperative and highly specific assembly of other protein - DNA complexes.

Original languageEnglish
Pages (from-to)220-229
Number of pages10
JournalACS Chemical Biology
Issue number4
StatePublished - Apr 18 2008

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Medicine


Dive into the research topics of 'Targeted chemical wedges reveal the role of allosteric DNA modulation in protein - DNA assembly'. Together they form a unique fingerprint.

Cite this