Targeting an essential GTPase obg for the development of broad-spectrum antibiotics

Josephine A. Bonventre, Ryszard A. Zielke, Konstantin V. Korotkov, Aleksandra E. Sikora

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

A promising new drug target for the development of novel broad-spectrum antibiotics is the highly conserved small GTPase Obg (YhbZ, CgtA), a protein essential for the survival of all bacteria including Neisseria gonorrhoeae (GC). GC is the agent of gonorrhea, a prevalent sexually transmitted disease resulting in serious consequences on reproductive and neonatal health. A preventive anti-gonorrhea vaccine does not exist, and options for effective antibiotic treatments are increasingly limited. To address the dire need for alternative antimicrobial strategies, we have designed and optimized a 384-well GTPase assay to identify inhibitors of Obg using as a model Obg protein from GC, ObgGC. The assay was validated with a pilot screen of 40,000 compounds and achieved an average Z' value of 0.58 ± 0.02, which suggests a robust assay amenable to high-Throughput screening. We developed secondary assessments for identified lead compounds that utilize the interaction between ObgGC and fluorescent guanine nucleotide analogs, mant-GTP and mant-GDP, and an ObgGC variant with multiple alterations in the G-domains that prevent nucleotide binding. To evaluate the broad-spectrum potential of ObgGC inhibitors, Obg proteins of Klebsiella pneumoniae and methicillin-resistant Staphylococcus aureus were assessed using the colorimetric and fluorescence-based activity assays. These approaches can be useful in identifying broad-spectrum Obg inhibitors and advancing the therapeutic battle against multidrug resistant bacteria.

Original languageEnglish
Article numbere0148222
JournalPLoS ONE
Volume11
Issue number2
DOIs
StatePublished - Feb 1 2016

Bibliographical note

Publisher Copyright:
© 2016 Bonventre et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Targeting an essential GTPase obg for the development of broad-spectrum antibiotics'. Together they form a unique fingerprint.

Cite this