Targeting PI3K and AMPKα Signaling Alone or in Combination to Enhance Radiosensitivity of Triple Negative Breast Cancer

Jeremy Johnson, Zeta Chow, Dana Napier, Eun Lee, Heidi L. Weiss, B. Mark Evers, Piotr Rychahou

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype and is characterized by poor survival. Radiotherapy plays an important role in treating TNBC. The purpose of this study was to determine whether inhibiting the AMP-activated protein kinase (AMPK) and phosphatidylinositol 3-kinase (PI3K) pathways alone or in combination potentiates radiotherapy in TNBC. AMPKα1 and AMPKα2 knockdown diminished cyclin D1 expression and induced G1 cell cycle arrest but did not induce apoptosis alone or in combination with radiotherapy. Next, we analyzed the role of PI3K p85α, p85β, p110α, p110β, Akt1, and Akt2 proteins on TNBC cell cycle progression and apoptosis induction. Akt1 and p110α knockdown diminished cyclin D1 expression and induced apoptosis. Silencing Akt1 promoted synergistic apoptosis induction during radiotherapy and further reduced survival after radiation. Treatment with the Akt inhibitor, MK-2206 48 h after radiotherapy decreased Akt1 levels and potentiated radiation-induced apoptosis. Together, our results demonstrate that AMPKα, p110α, and Akt1 promote TNBC proliferation and that Akt1 is a key regulator of radiosensitivity in TNBC. Importantly, combining radiotherapy with the pharmacological inhibition of Akt1 expression is a potentially promising approach for the treatment of TNBC.

Original languageEnglish
Article number1203
JournalCells
Volume9
Issue number5
DOIs
StatePublished - May 19 2020

Funding

FundersFunder number
National Institute of Environmental Health Sciences (NIEHS)T32ES007266

    Keywords

    • AMPK
    • PI3K
    • radiation
    • radiosensitivity
    • triple negative breast cancer

    ASJC Scopus subject areas

    • General Biochemistry, Genetics and Molecular Biology

    Fingerprint

    Dive into the research topics of 'Targeting PI3K and AMPKα Signaling Alone or in Combination to Enhance Radiosensitivity of Triple Negative Breast Cancer'. Together they form a unique fingerprint.

    Cite this