TY - JOUR
T1 - Targeting prostaglandin E2 EP1 receptors prevents seizure-associated P-glycoprotein up-regulation
AU - Pekcec, Anton
AU - Unkrüer, Bernadette
AU - Schlichtiger, Juli
AU - Soerensen, Jonna
AU - Hartz, Anika M.S.
AU - Bauer, Björn
AU - Van Vliet, Erwin A.
AU - Gorter, Jan A.
AU - Potschka, Heidrun
PY - 2009
Y1 - 2009
N2 - Up-regulation of the blood-brain barrier efflux transporter P-glycoprotein in central nervous system disorders results in restricted brain access and limited efficacy of therapeutic drugs. In epilepsies, seizure activity strongly triggers expression of P-glycoprotein. Here, we identified the prostaglandin E2 receptor, EP1, as a key factor in the signaling pathway that mediates seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier. In the rat pilocarpine model, status epilepticus significantly increased P-glycoprotein expression by 92 to 197% in the hippocampal hilus and granule cell layer as well as the piriform cortex. The EP1 receptor antagonist 8-chlorodibenz[b,f][1,4]oxazepine-10(11H)-carboxylic acid, 2-[1-oxo-3-(4- pyridinyl)propyl]hydrazide hydrochloride (SC-51089) abolished seizure-induced P-glycoprotein up-regulation and retained its expression at the control level. The control of P-glycoprotein expression despite prolonged seizure activity suggests that EP1 receptor antagonism will also improve antiepileptic drug efficacy. Preliminary evidence for this concept has been obtained using a massive kindling paradigm during which animals received a subchronic SC-51089 treatment. After withdrawal of the EP1 receptor antagonist, a low dose of the P-glycoprotein substrate phenobarbital resulted in an anticonvulsant effect in this pretreated group, whereas the same dosage of phenobarbital did not exert a significant effect in the respective control group. In conclusion, our data demonstrate that EP1 is a key signaling factor in the regulatory pathway that drives P-glycoprotein up-regulation during seizures. These findings suggest new intriguing possibilities to prevent and interrupt P-glycoprotein overexpression in epilepsy. Future studies are necessary to further evaluate the appropriateness of the strategy to enhance the efficacy of antiepileptic drugs.
AB - Up-regulation of the blood-brain barrier efflux transporter P-glycoprotein in central nervous system disorders results in restricted brain access and limited efficacy of therapeutic drugs. In epilepsies, seizure activity strongly triggers expression of P-glycoprotein. Here, we identified the prostaglandin E2 receptor, EP1, as a key factor in the signaling pathway that mediates seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier. In the rat pilocarpine model, status epilepticus significantly increased P-glycoprotein expression by 92 to 197% in the hippocampal hilus and granule cell layer as well as the piriform cortex. The EP1 receptor antagonist 8-chlorodibenz[b,f][1,4]oxazepine-10(11H)-carboxylic acid, 2-[1-oxo-3-(4- pyridinyl)propyl]hydrazide hydrochloride (SC-51089) abolished seizure-induced P-glycoprotein up-regulation and retained its expression at the control level. The control of P-glycoprotein expression despite prolonged seizure activity suggests that EP1 receptor antagonism will also improve antiepileptic drug efficacy. Preliminary evidence for this concept has been obtained using a massive kindling paradigm during which animals received a subchronic SC-51089 treatment. After withdrawal of the EP1 receptor antagonist, a low dose of the P-glycoprotein substrate phenobarbital resulted in an anticonvulsant effect in this pretreated group, whereas the same dosage of phenobarbital did not exert a significant effect in the respective control group. In conclusion, our data demonstrate that EP1 is a key signaling factor in the regulatory pathway that drives P-glycoprotein up-regulation during seizures. These findings suggest new intriguing possibilities to prevent and interrupt P-glycoprotein overexpression in epilepsy. Future studies are necessary to further evaluate the appropriateness of the strategy to enhance the efficacy of antiepileptic drugs.
UR - http://www.scopus.com/inward/record.url?scp=70349101332&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70349101332&partnerID=8YFLogxK
U2 - 10.1124/jpet.109.152520
DO - 10.1124/jpet.109.152520
M3 - Article
C2 - 19494186
AN - SCOPUS:70349101332
SN - 0022-3565
VL - 330
SP - 939
EP - 947
JO - Journal of Pharmacology and Experimental Therapeutics
JF - Journal of Pharmacology and Experimental Therapeutics
IS - 3
ER -