Terminally differentiated human neurons survive and integrate following transplantation into the traumatically injured rat brain

Judith K. Muir, Ramesh Raghupathi, Kathryn E. Saatman, Christina A. Wilson, Virginia M.Y. Lee, John Q. Trojanowski, Matthew F. Philips, Tracy K. McIntosh

Research output: Contribution to journalArticlepeer-review

45 Scopus citations


The present study evaluated the survival and integration of human postmitotic neurons (hNT) following transplantation into the traumatically injured rodent brain. Anesthetized male Sprague-Dawley rats (n = 47) were subjected to lateral fluid percussion brain injury of moderate severity (2.4- 2.6 atm). Sham animals (n = 28) were surgically prepared, but did not receive brain injury. At 24 h following injury or sham surgery, the rats were re- anesthetized and ~ 100,000 hNT cells (freshly cultured or previously frozen) or vehicle were stereotactically injected into the ipsilateral cortex. Animals were examined for neuromotor function at 48 h, 7 days, and 14 days posttransplantation using a standard battery of motor tests. Animals were sacrificed at 2 weeks postinjury and viability of hNT grafts was assessed by Nissl staining and MOC-1 immunohistochemistry, which recognizes human neural cell adhesion molecules (NCAM) expressed on hNT cells. Tranplanted hNT grafts remained viable in 83% of brain-injured animals at 2 weeks following transplantation of either fresh or frozen hNT cells. Glial fibrillary acidic protein (GFAP) immunohistochemistry revealed a marked increase in the number of reactive astrocytes following brain injury in both vehicle and hNT implanted animals. These reactive astrocytes appeared not to impede grafted cells from sending projections into host tissue. Despite the survival of transplanted cells in the traumatically injured brain, hNT cells had no significant effect on posttraumatic neurologic motor function during the acute posstraumatic period. Since hNT cells are transfectable, prolonged survival of these transplanted cells in the posttraumatic milieu suggests that grafted hNT cells may be a suitable means for delivery of therapeutic, exogenous proteins into the CNS for treatment of traumatic brain injury.

Original languageEnglish
Pages (from-to)403-414
Number of pages12
JournalJournal of Neurotrauma
Issue number5
StatePublished - May 1999


  • Fluid percussion
  • Motor dysfunction
  • NT2N cells
  • Neuronal grafts
  • Traumatic brain injury

ASJC Scopus subject areas

  • Clinical Neurology


Dive into the research topics of 'Terminally differentiated human neurons survive and integrate following transplantation into the traumatically injured rat brain'. Together they form a unique fingerprint.

Cite this