Tertiary model of a plant cellulose synthase

Latsavongsakda Sethaphong, Candace H. Haigler, James D. Kubicki, Jochen Zimmer, Dario Bonetta, Seth DeBolt, Yaroslava G. Yingling

Research output: Contribution to journalArticlepeer-review

123 Scopus citations

Abstract

A 3D atomistic model of a plant cellulose synthase (CESA) has remained elusive despite over forty years of experimental effort. Here, we report a computationally predicted 3D structure of 506 amino acids of cotton CESA within the cytosolic region. Comparison of the predicted plant CESA structure with the solved structure of a bacterial cellulose-synthesizing protein validates the overall fold of the modeled glycosyltransferase (GT) domain. The coaligned plant and bacterial GT domains share a six-stranded β-sheet, five α-helices, and conserved motifs similar to those required for catalysis in other GT-2 glycosyltransferases. Extending beyond the cross-kingdom similarities related to cellulose polymerization, the predicted structure of cotton CESA reveals that plant-specific modules (plant-conserved region and class-specific region) fold into distinct subdomains on the periphery of the catalytic region. Computational results support the importance of the plant-conserved region and/or class-specific region in CESA oligomerization to form the multimeric cellulose-synthesis complexes that are characteristic of plants. Relatively high sequence conservation between plant CESAs allowed mapping of known mutations and two previously undescribed mutations that perturb cellulose synthesis in Arabidopsis thaliana to their analogous positions in the modeled structure. Most of these mutation sites are near the predicted catalytic region, and the confluence of other mutation sites supports the existence of previously undefined functional nodes within the catalytic core of CESA. Overall, the predicted tertiary structure provides a platform for the biochemical engineering of plant CESAs.

Original languageEnglish
Pages (from-to)7512-7517
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume110
Issue number18
DOIs
StatePublished - Apr 30 2013

Keywords

  • GlycosylTransferase family 2
  • Molecular modeling
  • Protein structure prediction
  • Rosette cellulose synthase complex
  • β-1,4-glucan polymerization

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Tertiary model of a plant cellulose synthase'. Together they form a unique fingerprint.

Cite this