TY - JOUR
T1 - Testing for therapeutic medications
T2 - Analytical/pharmacological relationships and 'limitations' on the sensitivity of testing for certain agents
AU - Tobin, T.
AU - Harkins, J. Daniel
AU - Sams, R. A.
PY - 1999
Y1 - 1999
N2 - Proper veterinary care of horses requires that horses in training have access to modern therapeutic medication. However, the sensitivity of equine drug testing now allows for detection of pharmacologically insignificant concentrations of many therapeutic medications. In 1995, the Association of Racing Commissioners International (ARCI) resolved that members 'address trace level detection so as not to lead to disciplinary action based on pharmacologically insignificant traces of these substances'. The rationale behind this approach is to prevent overly-sensitive testing from inhibiting the proper and appropriate veterinary care of performance horses. This review describes a scientific approach to implement this resolution using local anaesthetics as a model system and compares this approach with others currently in place. For the purpose of this discussion, a 'trace' concentration is defined as a pharmacologically-insignificant concentration. Initially, the target pharmacological effect (e.g. local anaesthesia) was identified, and the dose response relationship was quantified. The 'Highest No Effect Dose' (HNED) was estimated and then administered to horses. Next, the target analyte was identified, synthesized, if necessary, and quantified in blood or urine; the concentrations observed after administration of the HNED are, by definition, true concentrations and hence are pharmacologically insignificant. The key to this approach has been the synthesis of a unique series of authentic equine metabolite standards, which has allowed scientific identification of the concentration at which the pharmacological effect was indistinguishable from control values. Traces found at less than this concentration are, by definition, 'no effect limits', 'no effect traces' (NETs), 'no effect cut-offs', 'no effect limitations on the sensitivity of testing', or 'subtherapeutic residues'. Conversely, this approach will also identify potent medications for which the sensitivity of testing may need to be improved. Within the context of these experiments, the data create an analytical/pharmacological database that should assist industry professionals in interpreting the significance of trace concentrations of these medications or their metabolites in official samples. The most favourable outcome of this research is more medically appropriate use of therapeutic medications in performance horses, yielding substantial benefits to the health and welfare of these horses.
AB - Proper veterinary care of horses requires that horses in training have access to modern therapeutic medication. However, the sensitivity of equine drug testing now allows for detection of pharmacologically insignificant concentrations of many therapeutic medications. In 1995, the Association of Racing Commissioners International (ARCI) resolved that members 'address trace level detection so as not to lead to disciplinary action based on pharmacologically insignificant traces of these substances'. The rationale behind this approach is to prevent overly-sensitive testing from inhibiting the proper and appropriate veterinary care of performance horses. This review describes a scientific approach to implement this resolution using local anaesthetics as a model system and compares this approach with others currently in place. For the purpose of this discussion, a 'trace' concentration is defined as a pharmacologically-insignificant concentration. Initially, the target pharmacological effect (e.g. local anaesthesia) was identified, and the dose response relationship was quantified. The 'Highest No Effect Dose' (HNED) was estimated and then administered to horses. Next, the target analyte was identified, synthesized, if necessary, and quantified in blood or urine; the concentrations observed after administration of the HNED are, by definition, true concentrations and hence are pharmacologically insignificant. The key to this approach has been the synthesis of a unique series of authentic equine metabolite standards, which has allowed scientific identification of the concentration at which the pharmacological effect was indistinguishable from control values. Traces found at less than this concentration are, by definition, 'no effect limits', 'no effect traces' (NETs), 'no effect cut-offs', 'no effect limitations on the sensitivity of testing', or 'subtherapeutic residues'. Conversely, this approach will also identify potent medications for which the sensitivity of testing may need to be improved. Within the context of these experiments, the data create an analytical/pharmacological database that should assist industry professionals in interpreting the significance of trace concentrations of these medications or their metabolites in official samples. The most favourable outcome of this research is more medically appropriate use of therapeutic medications in performance horses, yielding substantial benefits to the health and welfare of these horses.
UR - http://www.scopus.com/inward/record.url?scp=0032817639&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032817639&partnerID=8YFLogxK
U2 - 10.1046/j.1365-2885.1999.00207.x
DO - 10.1046/j.1365-2885.1999.00207.x
M3 - Article
C2 - 10447834
AN - SCOPUS:0032817639
SN - 0140-7783
VL - 22
SP - 220
EP - 233
JO - Journal of Veterinary Pharmacology and Therapeutics
JF - Journal of Veterinary Pharmacology and Therapeutics
IS - 3
ER -