Abstract
Background: Immunotherapy of gastrointestinal cancers is challenging; however, several lines of evidence suggest that adoptive transfer of stimulated or modified immune cells support not only protective role of immune cells in tumor microenvironment, but actively participate in the elimination of cancer cells. Methods: In vivo studies employing cancer cell-derived allograft murine models of gastrointestinal cancers were performed. The effects of T helper (Th) 2 cells on gastrointestinal cancers growth and tumor microenvironment composition using adoptive transfer of Th2 cells, interleukin (IL)-5 treatment, and immunofluorescence, multiplex and real-time PCR were explored. Results: Here, we show that Th2 cells play an essential role in the inhibition of colon and pancreas cancers progression. In murine models of gastrointestinal tumors using adoptive transfer of Th2 cells, we identify that Th2 cells are responsible for generation of apoptotic factors and affect macrophage as well as eosinophil recruitment into tumors where they produce cytotoxic factors. Moreover, we found that Th2 cells lead to IL-5 hypersecretion, which links the anti-tumorigenic function of Th2 cells and eosinophils. Importantly, we noted that recombinant IL-5 administration is also related with inhibition of gastrointestinal tumor growth. Finally, using an in vitro approach, we documented that both Th2 cells and eosinophils are directly responsible for gastrointestinal cancer cell killing. Conclusions: These data demonstrate the significance of Th2 cells, eosinophils and IL-5 in the inhibition of gastrointestinal tumor growth, and pointed toward tumor microenvironment reprogramming as a Th2 cell-mediated anti-tumorigenic mechanism of action.
Original language | English |
---|---|
Pages (from-to) | 387-397 |
Number of pages | 11 |
Journal | British Journal of Cancer |
Volume | 128 |
Issue number | 2 |
DOIs | |
State | Published - Jan 19 2023 |
Bibliographical note
Funding Information:This work was supported by a grant (R01CA207051 to EJB) from the National Institutes of Health, USA.
Funding Information:
DJ was supported by the Foundation for Polish Science (FNP, START 30.2021).
Publisher Copyright:
© 2022, The Author(s).
ASJC Scopus subject areas
- Oncology
- Cancer Research