TY - JOUR
T1 - The antiproliferative and immunotoxic effects of L-canavanine and L-canaline
AU - Bence, Aimee K.
AU - Worthen, David R.
AU - Adams, Val R.
AU - Crooks, Peter A.
PY - 2002
Y1 - 2002
N2 - L-Canavanine and its arginase-catalyzed metabolite, L-canaline, are two novel anticancer agents in development. Since the immunotoxic evaluation of agents in development is a critical component of the drug development process, the antiproliferative effects of L-canavanine and L-canaline were evaluated in vitro. Both L-canavanine and L-canaline were cytotoxic to peripheral blood mononucleocytes (PBMCs) in culture. Additionally, the mononucleocytes were concurrently exposed to either L-canavanine or L-canaline and each one of a series of compounds that may act as metabolic inhibitors of the action of L-canavanine and L-canaline (L-arginine, L-ornithine, D-arginine, L-lysine, L-homoarginine, putrescine, L-ω-nitro arginine methyl ester and L-citrulline). The capacity of these compounds to overcome the cytotoxic effects of L-canavanine or L-canaline was assessed in order to provide insight into the biochemical mechanisms that may underlie the toxicity of these two novel anticancer agents. The results of these studies suggest that the mechanism of L-canavanine toxicity is mediated through L-arginine-utilizing mechanisms and that the L-canavanine metabolite, L-canaline, is toxic to human PBMCs by disrupting polyamine biosynthesis. The elucidation of the biochemical mechanisms associated with the effects of L-canavanine and L-canaline on lymphoproliferation may be useful for maximizing the therapeutic effectiveness and minimizing the toxicity of these novel anticancer agents.
AB - L-Canavanine and its arginase-catalyzed metabolite, L-canaline, are two novel anticancer agents in development. Since the immunotoxic evaluation of agents in development is a critical component of the drug development process, the antiproliferative effects of L-canavanine and L-canaline were evaluated in vitro. Both L-canavanine and L-canaline were cytotoxic to peripheral blood mononucleocytes (PBMCs) in culture. Additionally, the mononucleocytes were concurrently exposed to either L-canavanine or L-canaline and each one of a series of compounds that may act as metabolic inhibitors of the action of L-canavanine and L-canaline (L-arginine, L-ornithine, D-arginine, L-lysine, L-homoarginine, putrescine, L-ω-nitro arginine methyl ester and L-citrulline). The capacity of these compounds to overcome the cytotoxic effects of L-canavanine or L-canaline was assessed in order to provide insight into the biochemical mechanisms that may underlie the toxicity of these two novel anticancer agents. The results of these studies suggest that the mechanism of L-canavanine toxicity is mediated through L-arginine-utilizing mechanisms and that the L-canavanine metabolite, L-canaline, is toxic to human PBMCs by disrupting polyamine biosynthesis. The elucidation of the biochemical mechanisms associated with the effects of L-canavanine and L-canaline on lymphoproliferation may be useful for maximizing the therapeutic effectiveness and minimizing the toxicity of these novel anticancer agents.
KW - Amino acid metabolism
KW - Immunotoxicity
KW - L-canaline
KW - L-canavanine
UR - http://www.scopus.com/inward/record.url?scp=0036245198&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036245198&partnerID=8YFLogxK
U2 - 10.1097/00001813-200203000-00013
DO - 10.1097/00001813-200203000-00013
M3 - Article
C2 - 11984075
AN - SCOPUS:0036245198
SN - 0959-4973
VL - 13
SP - 313
EP - 320
JO - Anti-Cancer Drugs
JF - Anti-Cancer Drugs
IS - 3
ER -