The Bombieri–Vinogradov Theorem for Nilsequences

Xuancheng Shao, Joni Teräväinen

Research output: Contribution to journalArticlepeer-review

Abstract

We establish results of Bombieri–Vinogradov type for the von Mangoldt function Λ(n) twisted by a nilsequence. In particular, we obtain Bombieri–Vinogradov type results for the von Mangoldt function twisted by any polynomial phase e(P(n)); the results obtained are as strong as the ones previously known in the case of linear exponential twists. We derive a number of applications of these results. Firstly, we show that the primes p obeying a “nil-Bohr set” condition, such as (Formula Presented), exhibit bounded gaps. Secondly, we show that the Chen primes are well-distributed in nil-Bohr sets, generalizing a result of Matomäki. Thirdly, we generalize the Green–Tao result on linear equations in the primes to primes belonging to an arithmetic progression to large modulus q ≤xθ, for almost all q.

Original languageEnglish
Article number21
JournalDiscrete Analysis
Volume2021
DOIs
StatePublished - 2021

Bibliographical note

Funding Information:
*Supported by the NSF grant DMS-1802224. †Supported by a Titchmarsh Research Fellowship.

Publisher Copyright:
© 2021. Xuancheng Shao and Joni Teravainen

Keywords

  • Bombieri-vinogradov theorem
  • Gowers norms
  • Nilsequences

ASJC Scopus subject areas

  • Algebra and Number Theory
  • Geometry and Topology
  • Discrete Mathematics and Combinatorics

Fingerprint

Dive into the research topics of 'The Bombieri–Vinogradov Theorem for Nilsequences'. Together they form a unique fingerprint.

Cite this