TY - JOUR
T1 - The critical role of persistent sodium current in hippocampal gamma oscillations
AU - Kang, Young Jin
AU - Clement, Ethan M.
AU - Sumsky, Stefan L.
AU - Xiang, Yangfei
AU - Park, In Hyun
AU - Santaniello, Sabato
AU - Greenfield, Lazar John
AU - Garcia-Rill, Edgar
AU - Smith, Bret N.
AU - Lee, Sang Hun
N1 - Publisher Copyright:
© 2019 Elsevier Ltd
PY - 2020/1/1
Y1 - 2020/1/1
N2 - Gamma network oscillations in the brain are fast rhythmic network oscillations in the gamma frequency range (~30-100 Hz), playing key roles in the hippocampus for learning, memory, and spatial processing. There is evidence indicating that GABAergic interneurons, including parvalbumin-expressing basket cells (PVBCs), contribute to cortical gamma oscillations through synaptic interactions with excitatory cells. However, the molecular, cellular, and circuit underpinnings underlying generation and maintenance of cortical gamma oscillations are largely elusive. Recent studies demonstrated that intrinsic and synaptic properties of GABAergic interneurons and excitatory cells are regulated by a slowly inactivating or non-inactivating sodium current (i.e., persistent sodium current, INaP), suggesting that INaP is involved in gamma oscillations. Here, we tested whether INaP plays a role in hippocampal gamma oscillations using pharmacological, optogenetic, and electrophysiological approaches. We found that INaP blockers, phenytoin (40 μM and 100 μM) and riluzole (10 μM), reduced gamma oscillations induced by optogenetic stimulation of CaMKII-expressing cells in CA1 networks. Whole-cell patch-clamp recordings further demonstrated that phenytoin (100 μM) reduced INaP and firing frequencies in both PVBCs and pyramidal cells without altering threshold and amplitude of action potentials, but increased rheobase in both cell types. These results suggest that INaP in pyramidal cells and PVBCs is required for hippocampal gamma oscillations, supporting a pyramidal-interneuron network gamma model. Phenytoin-mediated modulation of hippocampal gamma oscillations may be a mechanism underlying its anticonvulsant efficacy, as well as its contribution to cognitive impairments in epilepsy patients.
AB - Gamma network oscillations in the brain are fast rhythmic network oscillations in the gamma frequency range (~30-100 Hz), playing key roles in the hippocampus for learning, memory, and spatial processing. There is evidence indicating that GABAergic interneurons, including parvalbumin-expressing basket cells (PVBCs), contribute to cortical gamma oscillations through synaptic interactions with excitatory cells. However, the molecular, cellular, and circuit underpinnings underlying generation and maintenance of cortical gamma oscillations are largely elusive. Recent studies demonstrated that intrinsic and synaptic properties of GABAergic interneurons and excitatory cells are regulated by a slowly inactivating or non-inactivating sodium current (i.e., persistent sodium current, INaP), suggesting that INaP is involved in gamma oscillations. Here, we tested whether INaP plays a role in hippocampal gamma oscillations using pharmacological, optogenetic, and electrophysiological approaches. We found that INaP blockers, phenytoin (40 μM and 100 μM) and riluzole (10 μM), reduced gamma oscillations induced by optogenetic stimulation of CaMKII-expressing cells in CA1 networks. Whole-cell patch-clamp recordings further demonstrated that phenytoin (100 μM) reduced INaP and firing frequencies in both PVBCs and pyramidal cells without altering threshold and amplitude of action potentials, but increased rheobase in both cell types. These results suggest that INaP in pyramidal cells and PVBCs is required for hippocampal gamma oscillations, supporting a pyramidal-interneuron network gamma model. Phenytoin-mediated modulation of hippocampal gamma oscillations may be a mechanism underlying its anticonvulsant efficacy, as well as its contribution to cognitive impairments in epilepsy patients.
KW - Antiepileptic drugs
KW - Cognitive impairment
KW - Optogenetics
KW - Parvalbumin-expressing interneurons
KW - Pyramidal-interneuron network gamma (PING)
UR - http://www.scopus.com/inward/record.url?scp=85074437025&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074437025&partnerID=8YFLogxK
U2 - 10.1016/j.neuropharm.2019.107787
DO - 10.1016/j.neuropharm.2019.107787
M3 - Article
C2 - 31550457
AN - SCOPUS:85074437025
SN - 0028-3908
VL - 162
JO - Neuropharmacology
JF - Neuropharmacology
M1 - 107787
ER -