THE CRITICAL ROLE OF RECYCLING OF POST-GRENVILLIAN, NEOPROTEROZOIC SEDIMENTS FOR PHANEROZOIC LAURENTIAN CLASTIC SYSTEMS: EVIDENCE FROM DETRITAL-ZIRCON AND -MONAZITE GEOCHRONOLOGY AND TEXTURES

David P. Moecher, Steven C. Zotto, Scott D. Samson

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Lithic and quartz arenites of the Central Appalachian Basin deposited by late Paleozoic Laurentian fluvial systems are widely interpreted to be sourced by recycling of late Precambrian and early Paleozoic clastic sequences in the Appalachian Orogen. U-Pb and (U-Th)/He age distributions for detrital-zircon and Th-Pb age distributions for detrital-monazite, detrital-zircon and monazite textures (including detrital diagenetic monazite, which prove recycling), sandstone petrology, heavy-mineral abundances, and other detrital proxies are all accounted for by the following: 1) lithic arenite is directly sourced from late Neoproterozoic metasediments in the proximal Appalachian fold and thrust belt via transverse drainages, 2) the late Neoproterozoic sediments were recycled from early Neoproterozoic, post-Grenvillian clastic sequences, 3) Cambrian quartz arenites along the Laurentian margin were recycled from Neoproterozoic sequences with local cratonic input, 4) although dominated by sediment of ultimate Grenvillian age, quartz arenites require ~ 40% of Paleoproterozoic and Archean input, interpreted to be recycled from late Neoproterozoic to Devonian clastic sequences of the northern Appalachians and/or southern (Scottish–Irish) Caledonides in the distal reaches of a longitudinal drainage system. Ordovician to Mississippian clastic sequences and their metamorphosed equivalents in the Appalachian crystalline core were also likely sediment sources. Quartz arenite does not result from mixing of lithic arenite with other sources because of differences in textural and compositional maturity, and in heavy-mineral characteristics. Input from the Laurentian craton, commonly cited as the source for Paleoproterozoic and Archean detrital zircon in the eastern Laurentian clastic systems, is untenable here because of: 1) the presence of Paleozoic monazite derived from Appalachian Neoproterozoic and early Paleozoic metasediments, 2) abundant detrital chromite, and 3) abundant Paleozoic detrital muscovite. Multiple recycling explains all observed sedimentologic and mineralogic characteristics of the two lithic types. Incorporation of published detrital-zircon data for Paleozoic to modern clastic sequences in eastern Laurentia reveals that Grenville-age zircons experienced at least five and potentially ten recycling events since entering the clastic system in the Neoproterozoic. Recycling also explains the abundance of quartz pebbles in conglomerates of the quartz-arenite lithofacies, and the range of detrital-muscovite 40Ar/39Ar ages in quartz arenites of the Appalachian Basin.

Original languageEnglish
Pages (from-to)118-144
Number of pages27
JournalJournal of Sedimentary Research
Volume93
Issue number2
DOIs
StatePublished - Feb 2023

Bibliographical note

Publisher Copyright:
Copyright Ó 2023, SEPM (Society for Sedimentary Geology)

ASJC Scopus subject areas

  • Geology

Fingerprint

Dive into the research topics of 'THE CRITICAL ROLE OF RECYCLING OF POST-GRENVILLIAN, NEOPROTEROZOIC SEDIMENTS FOR PHANEROZOIC LAURENTIAN CLASTIC SYSTEMS: EVIDENCE FROM DETRITAL-ZIRCON AND -MONAZITE GEOCHRONOLOGY AND TEXTURES'. Together they form a unique fingerprint.

Cite this