The effect of graphitization temperature on the structure of helical-ribbon carbon nanofibers

Matthew Weisenberger, Ignacio Martin-Gullon, José Vera-Agullo, Helena Varela-Rizo, César Merino, Rodney Andrews, Dali Qian, Terry Rantell

Research output: Contribution to journalArticlepeer-review

68 Scopus citations

Abstract

Structural rearrangement of helical-ribbon carbon nanofibers (CNFs) was studied as a function of graphitization temperature. The as-produced nanofibers are composed of a helical ribbon of graphene spiralled about and angled to the fiber axis. The discrete layers of graphene ribbon overlap each other forming the helical-ribbon in contrast to the discontinuous cones of the more common stacked-cup CNF morphology. After heat treatment to 2400 °C and above, the CNFs were completely free of residual metal catalyst inclusions, principally nickel used in their synthesis, and other functionalities. The formation of loops at the graphene edges was also observed. Heat treatment through the temperature range 1500-2800 °C resulted in a relatively minor contraction in interlayer spacing d002 from 0.3381 to 0.3363 nm. This was attributed to the highly graphitic character of the as-produced CNFs. However, there were significant increases in the crystallite thickness Lc through this temperature range. In addition, heat treatment above 2400 °C induced a marked change of the nanofiber morphology from circular to faceted polygonal cross-section resulting from the re-ordering of the turbostratic, curved graphene layers to regions of planar graphene layers with 3-dimensional graphitic structure (AB stacking).

Original languageEnglish
Pages (from-to)2211-2218
Number of pages8
JournalCarbon
Volume47
Issue number9
DOIs
StatePublished - Aug 2009

ASJC Scopus subject areas

  • Chemistry (all)
  • Materials Science (all)

Fingerprint

Dive into the research topics of 'The effect of graphitization temperature on the structure of helical-ribbon carbon nanofibers'. Together they form a unique fingerprint.

Cite this