The Effect of Mycobacterium Cell Wall Fraction on Histologic, Immunologic, and Clinical Parameters of Postpartum Involution in the Mare

Carleigh E. Fedorka, Harutake Murase, Shavahn C. Loux, Alan T. Loynachan, Olivia F. Walker, Edward L. Squires, Barry A. Ball, Mats H.T. Troedsson

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Maintaining yearly foal production is important for the economic success of the broodmare, and this requires breeding to occur as quickly postpartum as possible. The initial postpartum estrus occurs within 5–20 days postpartum, whereas the uterus is still undergoing repair from tissue alterations during pregnancy and parturition, a process known as involution. Attempts have been made to hasten this process, but with minimal success. Mycobacterium cell wall fraction (MCWF) is an immunomodulator that has been shown to reduce bacterial growth and alter aspects of the immune response to breeding, but it is unknown if MCWF hastens the process of involution. Therefore, the objectives of this study were to (1) investigate the effect of MCWF on tissue remodeling, (2) assess the effect of MCWF on the local immune system of the uterus, and (3) determine the optimal treatment interval needed for these processes to occur. We hypothesize that repeated treatments of MCWF postpartum will hasten the process of involution. To study this, 16 pregnant mares of mixed breeds were evaluated postpartum. Control mares (n = 4) received 1.5 mL lactated Ringer's solution intravenously on Day 1 (Day 0 = day of parturition) postpartum and again on Day 7, whereas treated mares either received 1.5 mL Settle intravenously on Day 1 and Day 7 (TX1; n = 6) or 1.5 mL Settle intravenously on Day 1 and then every 3 days until ovulation was detected (TX2; n = 6) and then evaluated until 15 days postpartum. Mares were assessed every 3 days for clinical, immunologic, and histologic parameters. Clinical parameters were assessed with transrectal ultrasonography and included ovarian activity, uterine fluid retention, and measurement of the uterine diameter, in addition to endometrial culture. Immunologic parameters included endometrial biopsies for quantitative polymerase chain reaction for expression of various cytokines (interleukin [IL]-1β, IL-1RN, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor [TNF], interferon [IFN]-γ, and granulocyte-macrophage colony-stimulating factor) in addition to endometrial cytology. Formalin-fixed endometrial biopsies were histologically assessed for the retention of microcaruncles, dilation of endometrial glands, and inflammation of the mucosa, stratum compactum, and spongiosum. Statistics were performed using SAS 9.4, using a mixed model for repeated measures with mare and treatment as a random effect. All post-hoc analysis was done using a Tukey's honestly significant difference test. Involution was considered complete by Day 15 postpartum in all mares, and the day postpartum had a significant effect on almost all parameters investigated, indicating the immunologic process of involution. Treatment with MCWF decreased the magnitude of bacterial growth in addition to time to negative culture. In addition, MCWF increased the expression of IL-1β, IFNγ, and TNF. Although minimal treatment effect was noted histologically, a decrease in mucosal inflammation was seen in MCWF-treated mares. In conclusion, involution appears to be influenced by the immune system. In addition, MCWF appears to have a bactericidal effect on the postpartum mare, and this may be because of an increase in proinflammatory cytokines. It is unknown if this bactericidal property will improve fertility on the first estrous cycle postpartum, and future studies are needed to determine this.

Original languageEnglish
Article number103013
JournalJournal of Equine Veterinary Science
StatePublished - Jul 2020

Bibliographical note

Publisher Copyright:
© 2020 The Author(s)


  • Equine
  • Immunomodulation
  • Involution
  • MCWF
  • Postpartum

ASJC Scopus subject areas

  • Equine


Dive into the research topics of 'The Effect of Mycobacterium Cell Wall Fraction on Histologic, Immunologic, and Clinical Parameters of Postpartum Involution in the Mare'. Together they form a unique fingerprint.

Cite this