TY - JOUR
T1 - The kinase PLK1 promotes the development of Kras/Tp53-mutant lung adenocarcinoma through transcriptional activation of the receptor RET
AU - Kong, Yifan
AU - Allison, Derek B.
AU - Zhang, Qiongsi
AU - He, Daheng
AU - Li, Yuntong
AU - Mao, Fengyi
AU - Li, Chaohao
AU - Li, Zhiguo
AU - Zhang, Yanquan
AU - Wang, Jianlin
AU - Wang, Chi
AU - Brainson, Christine F.
AU - Liu, Xiaoqi
N1 - Publisher Copyright:
Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S.
PY - 2022/10/4
Y1 - 2022/10/4
N2 - Increased abundance of polo-like kinase 1 (PLK1) is observed in various tumor types, particularly in lung adenocarcinoma (LUAD). Here, we found that PLK1 accelerated the progression of LUAD through a mechanism that was independent of its role in mediating mitotic cell division. Analysis of human tumor databases revealed that increased PLK1 abundance in LUAD correlated with mutations in KRAS and p53, with tumor stage, and with reduced survival in patients. In a mouse model of KRASG12D-driven, p53-deficient LUAD, PLK1 overexpression increased tumor burden, decreased tumor cell differentiation, and reduced animal survival. PLK1 overexpression in cultured cells and mice indirectly increased the expression of the gene encoding the receptor tyrosine kinase RET by phosphorylating the transcription factor TTF-1. Signaling by RET and mutant KRAS in these tumors converged to activate the mitogen-activated protein kinase (MAPK) pathway. Pharmacological inhibition of the MAPK pathway kinase MEK combined with inhibition of either RET or PLK1 markedly suppressed tumor growth. Our findings show that PLK1 can amplify MAPK signaling and reveal a potential target for stemming progression in lung cancers with high PLK1 abundance.
AB - Increased abundance of polo-like kinase 1 (PLK1) is observed in various tumor types, particularly in lung adenocarcinoma (LUAD). Here, we found that PLK1 accelerated the progression of LUAD through a mechanism that was independent of its role in mediating mitotic cell division. Analysis of human tumor databases revealed that increased PLK1 abundance in LUAD correlated with mutations in KRAS and p53, with tumor stage, and with reduced survival in patients. In a mouse model of KRASG12D-driven, p53-deficient LUAD, PLK1 overexpression increased tumor burden, decreased tumor cell differentiation, and reduced animal survival. PLK1 overexpression in cultured cells and mice indirectly increased the expression of the gene encoding the receptor tyrosine kinase RET by phosphorylating the transcription factor TTF-1. Signaling by RET and mutant KRAS in these tumors converged to activate the mitogen-activated protein kinase (MAPK) pathway. Pharmacological inhibition of the MAPK pathway kinase MEK combined with inhibition of either RET or PLK1 markedly suppressed tumor growth. Our findings show that PLK1 can amplify MAPK signaling and reveal a potential target for stemming progression in lung cancers with high PLK1 abundance.
UR - http://www.scopus.com/inward/record.url?scp=85139573114&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85139573114&partnerID=8YFLogxK
U2 - 10.1126/scisignal.abj4009
DO - 10.1126/scisignal.abj4009
M3 - Article
C2 - 36194647
AN - SCOPUS:85139573114
SN - 1945-0877
VL - 15
JO - Science Signaling
JF - Science Signaling
IS - 754
M1 - eabj4009
ER -