TY - JOUR
T1 - The LPP1 and DPP1 gene products account for most of the isoprenoid phosphate phosphatase activities in Saccharomyces cerevisiae
AU - Faulkner, Alexander
AU - Chen, Xiaoming
AU - Rush, Jeffrey
AU - Horazdovsky, Bruce
AU - Waechter, Charles J.
AU - Carman, George M.
AU - Sternweis, Paul C.
PY - 1999/5/21
Y1 - 1999/5/21
N2 - Two genes in Saccharomyces cerevisiae, LPP1 and DPP1, with homology to a mammalian phosphatidic acid (PA) phosphatase were identified and disrupted. Neither single nor combined deletions resulted in growth or secretion phenotypes. As observed previously (Toke, D. A., Bennett, W. L., Dillon, D. A., Wu, W.-I., Chen, X., Ostrander, D. B., Oshiro, J., Cremesti, A., Voelker, D. R., Fischl, A. S., and Carman, G. M. (1998) J. Biol. Chem. 273, 3278- 3284; Toke, D. A., Bennett, W. L., Oshiro, J., Wu, W.-I., Voelker, D. R., and Carman, G. M. (1998) J. Biol. Chem. 273, 14331-14338), the disruption of DPP1 and LPP1 produced profound losses of Mg2+-independent PA phosphatase activity. The coincident attenuation of hydrolyric activity against diacylglycerol pyrophosphate prompted an examination of the effects of these disruptions on hydrolysis of isoprenoid pyrophosphates. Disruption of either LPP1 or DPP1 caused respective decreases of about 25 and 75% in Mg2+- independent hydrolysis of several isoprenoid phosphates by particulate fractions isolated from these cells. The particulate and cytosolic fractions from the double disruption (lpp1Δ dpp1Δ) showed essentially complete loss of Mg2+-independent hydrolyric activity toward dolichyl phosphate (dolichyl-P), dolichyl pyrophosphate (dolichyl-P-P), farnesyl pyrophosphate (farnesyl-P-P), and geranylgeranyl pyrophosphate (geranylgeranyl-P-P). However, a modest Mg2+-stimulated activity toward PA and dolichyl-P was retained in cytosol from lpp1Δ dpp1Δ cells. The action of Dpp1p on isoprenyl pyrophosphates was confirmed by characterization of the hydrolysis of geranylgeranyl-P-P by the purified protein. These results indicate that LPP1 and DPP1 account for most of the hydrolytic activities toward dolichyl- P-P, dolichyl-P, farnesyl,P-P, and geranylgeranyl-P-P but also suggest that yeast contain other enzymes capable of dephosphorylating these essential isoprenoid intermediates.
AB - Two genes in Saccharomyces cerevisiae, LPP1 and DPP1, with homology to a mammalian phosphatidic acid (PA) phosphatase were identified and disrupted. Neither single nor combined deletions resulted in growth or secretion phenotypes. As observed previously (Toke, D. A., Bennett, W. L., Dillon, D. A., Wu, W.-I., Chen, X., Ostrander, D. B., Oshiro, J., Cremesti, A., Voelker, D. R., Fischl, A. S., and Carman, G. M. (1998) J. Biol. Chem. 273, 3278- 3284; Toke, D. A., Bennett, W. L., Oshiro, J., Wu, W.-I., Voelker, D. R., and Carman, G. M. (1998) J. Biol. Chem. 273, 14331-14338), the disruption of DPP1 and LPP1 produced profound losses of Mg2+-independent PA phosphatase activity. The coincident attenuation of hydrolyric activity against diacylglycerol pyrophosphate prompted an examination of the effects of these disruptions on hydrolysis of isoprenoid pyrophosphates. Disruption of either LPP1 or DPP1 caused respective decreases of about 25 and 75% in Mg2+- independent hydrolysis of several isoprenoid phosphates by particulate fractions isolated from these cells. The particulate and cytosolic fractions from the double disruption (lpp1Δ dpp1Δ) showed essentially complete loss of Mg2+-independent hydrolyric activity toward dolichyl phosphate (dolichyl-P), dolichyl pyrophosphate (dolichyl-P-P), farnesyl pyrophosphate (farnesyl-P-P), and geranylgeranyl pyrophosphate (geranylgeranyl-P-P). However, a modest Mg2+-stimulated activity toward PA and dolichyl-P was retained in cytosol from lpp1Δ dpp1Δ cells. The action of Dpp1p on isoprenyl pyrophosphates was confirmed by characterization of the hydrolysis of geranylgeranyl-P-P by the purified protein. These results indicate that LPP1 and DPP1 account for most of the hydrolytic activities toward dolichyl- P-P, dolichyl-P, farnesyl,P-P, and geranylgeranyl-P-P but also suggest that yeast contain other enzymes capable of dephosphorylating these essential isoprenoid intermediates.
UR - http://www.scopus.com/inward/record.url?scp=0033591216&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033591216&partnerID=8YFLogxK
U2 - 10.1074/jbc.274.21.14831
DO - 10.1074/jbc.274.21.14831
M3 - Article
C2 - 10329682
AN - SCOPUS:0033591216
SN - 0021-9258
VL - 274
SP - 14831
EP - 14837
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 21
ER -