TY - JOUR
T1 - The MOSDEF Survey
T2 - Sulfur Emission-line Ratios Provide New Insights into Evolving Interstellar Medium Conditions at High Redshift
AU - Shapley, Alice E.
AU - Sanders, Ryan L.
AU - Shao, Peng
AU - Reddy, Naveen A.
AU - Kriek, Mariska
AU - Coil, Alison L.
AU - Mobasher, Bahram
AU - Siana, Brian
AU - Shivaei, Irene
AU - Freeman, William R.
AU - Azadi, Mojegan
AU - Price, Sedona H.
AU - Leung, Gene C.K.
AU - Fetherolf, Tara
AU - Groot, Laura De
AU - Zick, Tom
AU - Fornasini, Francesca M.
AU - Barro, Guillermo
N1 - Publisher Copyright:
© 2019. The American Astronomical Society. All rights reserved..
PY - 2019/8/20
Y1 - 2019/8/20
N2 - We present results on the emission-line properties of 1.3≤z≤2.7 galaxies drawn from the complete the MOSFIRE Deep Evolution Field (MOSDEF) survey. Specifically, we use observations of the emission-line diagnostic diagram of [O iii]λ 5007/Hβ versus [S ii]λλ6717,6731/Hα, i.e., the "[S ii] BPT diagram," to gain insight into the physical properties of high-redshift star-forming regions. High-redshift MOSDEF galaxies are offset toward lower [S ii]λλ6717,6731/Hα at fixed [O iii]λ5007/Hβ, relative to local galaxies from the Sloan Digital Sky Survey (SDSS). Furthermore, at fixed [O iii]λ5007/Hβ, local SDSS galaxies follow a trend of decreasing [S ii]λλ6717,6731/Hα as the surface density of star formation (ΣSFR) increases. We explain this trend in terms of the decreasing fractional contribution from diffuse ionized gas (f DIG) as ΣSFR increases in galaxies, which causes galaxy-integrated line ratios to shift toward the locus of pure H ii-region emission. The z∼0 relationship between f DIG and ΣSFR implies that high-redshift galaxies have lower f DIG values than typical local systems, given their significantly higher typical ΣSFR. When an appropriate low-redshift benchmark with zero or minimal f DIG is used, high-redshift MOSDEF galaxies appear offset toward higher [S ii]λλ6717,6731/Hα and/or [O iii]λ 5007/Hβ. The joint shifts of high-redshift galaxies in the [S ii] and [N ii] BPT diagrams are best explained in terms of the harder spectra ionizing their star-forming regions at fixed nebular oxygen abundance (expected for chemically young galaxies), as opposed to large variations in N/O ratios or higher ionization parameters. The evolving mixture of H ii regions and diffuse ionized gas is an essential ingredient of our description of the interstellar medium over cosmic time.
AB - We present results on the emission-line properties of 1.3≤z≤2.7 galaxies drawn from the complete the MOSFIRE Deep Evolution Field (MOSDEF) survey. Specifically, we use observations of the emission-line diagnostic diagram of [O iii]λ 5007/Hβ versus [S ii]λλ6717,6731/Hα, i.e., the "[S ii] BPT diagram," to gain insight into the physical properties of high-redshift star-forming regions. High-redshift MOSDEF galaxies are offset toward lower [S ii]λλ6717,6731/Hα at fixed [O iii]λ5007/Hβ, relative to local galaxies from the Sloan Digital Sky Survey (SDSS). Furthermore, at fixed [O iii]λ5007/Hβ, local SDSS galaxies follow a trend of decreasing [S ii]λλ6717,6731/Hα as the surface density of star formation (ΣSFR) increases. We explain this trend in terms of the decreasing fractional contribution from diffuse ionized gas (f DIG) as ΣSFR increases in galaxies, which causes galaxy-integrated line ratios to shift toward the locus of pure H ii-region emission. The z∼0 relationship between f DIG and ΣSFR implies that high-redshift galaxies have lower f DIG values than typical local systems, given their significantly higher typical ΣSFR. When an appropriate low-redshift benchmark with zero or minimal f DIG is used, high-redshift MOSDEF galaxies appear offset toward higher [S ii]λλ6717,6731/Hα and/or [O iii]λ 5007/Hβ. The joint shifts of high-redshift galaxies in the [S ii] and [N ii] BPT diagrams are best explained in terms of the harder spectra ionizing their star-forming regions at fixed nebular oxygen abundance (expected for chemically young galaxies), as opposed to large variations in N/O ratios or higher ionization parameters. The evolving mixture of H ii regions and diffuse ionized gas is an essential ingredient of our description of the interstellar medium over cosmic time.
UR - http://www.scopus.com/inward/record.url?scp=85072569438&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072569438&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/ab385a
DO - 10.3847/2041-8213/ab385a
M3 - Article
AN - SCOPUS:85072569438
SN - 2041-8205
VL - 881
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 2
M1 - L35
ER -