Abstract
Introduction: The Aster-C protein (encoded by the Gramd1c gene) is an endoplasmic reticulum (ER) resident protein that has been reported to transport cholesterol from the plasma membrane to the ER. Although there is a clear role for the closely-related Aster-B protein in cholesterol transport and downstream esterification in the adrenal gland, the specific role for Aster-C in cholesterol homeostasis is not well understood. Here, we have examined whole body cholesterol balance in mice globally lacking Aster-C under low or high dietary cholesterol conditions. Method: Age-matched Gramd1c+/+ and Gramd1c−/− mice were fed either low (0.02%, wt/wt) or high (0.2%, wt/wt) dietarycholesterol and levels of sterol-derived metabolites were assessed in the feces, liver, and plasma. Results: Compared to wild type controls (Gramd1c+/+) mice, mice lackingGramd1c (Gramd1c−/−) have no significant alterations in fecal, liver, or plasma cholesterol. Given the potential role for Aster C in modulating cholesterol metabolism in diverse tissues, we quantified levels of cholesterol metabolites such as bile acids, oxysterols, and steroid hormones. Compared to Gramd1c+/+ controls, Gramd1c−/− mice had modestly reduced levels of select bile acid species and elevated cortisol levels, only under low dietary cholesterol conditions. However, the vast majority of bile acids, oxysterols, and steroid hormones were unaltered in Gramd1c−/− mice. Bulk RNA sequencing in the liver showed that Gramd1c−/− mice did not exhibit alterations in sterol-sensitive genes, but instead showed altered expression of genes in major urinary protein and cytochrome P450 (CYP) families only under low dietary cholesterol conditions. Discussion: Collectively, these data indicate nominal effects of Aster-C on whole body cholesterol transport and metabolism under divergent dietary cholesterol conditions. These results strongly suggest that Aster-C alone is not sufficient to control whole body cholesterol balance, but can modestly impact circulating cortisol and bile acid levels when dietary cholesterol is limited.
Original language | English |
---|---|
Article number | 1371096 |
Journal | Frontiers in Physiology |
Volume | 15 |
DOIs | |
State | Published - 2024 |
Bibliographical note
Publisher Copyright:Copyright © 2024 Banerjee, Hohe, Cao, Jung, Horak, Ramachandiran, Massey, Varadharajan, Zajczenko, Burrows, Dutta, Goudarzi, Mahen, Carter, Helsley, Gordon, Morton, Strauch, Willard, Gogonea, Gogonea, Pedrelli, Parini and Brown.
Funding
The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported in part by National Institutes of Health grants R01 DK120679 (JB), P01 HL147823 (JB), P50 AA024333 (J.M.B.), R01 DK130227 (JB), and RF1 NS133812 (JB). Some of the metabolomic data (steroid hormones) were acquired at the University of California - Davis West Coast Metabolomics Center which is funded in part by U2CES030158.
Funders | Funder number |
---|---|
National Institutes of Health (NIH) | R01 DK120679, RF1 NS133812, P50 AA024333, R01 DK130227, P01 HL147823 |
National Institutes of Health (NIH) | |
West Coast Metabolomics Center, University of California, Davis | U2CES030158 |
West Coast Metabolomics Center, University of California, Davis |
Keywords
- cholesterol
- lipoprotein
- metabolism
- oxysterol
- steroid hormone
ASJC Scopus subject areas
- Physiology
- Physiology (medical)