TY - JOUR
T1 - The Phosphoinositide-dependent Kinase, PDK-1, Phosphorylates Conventional Protein Kinase C Isozymes by a Mechanism That Is Independent of Phosphoinositide 3-Kinase
AU - Sonnenburg, Erica Dutil
AU - Gao, Tianyan
AU - Newton, Alexandra C.
PY - 2001/11/30
Y1 - 2001/11/30
N2 - Phosphorylation by the phosphoinositide-dependent kinase, PDK-1, is required for the activation of diverse members of the AGC family of protein kinases, including the protein kinase C (PKC) isozymes. Here we explore the subcellular location of the PDK-1-mediated phosphorylation of conventional PKCs, and we address whether this phosphorylation is regulated by phosphoinositide 3-kinase. Pulse-chase experiments reveal that newly synthesized endogenous PKC α is primarily phosphorylated in the membrane fraction of COS-7 cells, where it is processed to a species that is phosphorylated at the activation loop and at two carboxyl-terminal positions. This "mature" species is then released into the cytosol. Deletion of the plekstrin homology domain of PDK-1 results in a 4-fold increase in the rate of processing of PKC indicating an autoinhibitory role for this domain. Autoinhibition by the plekstrin homology domain is not relieved by binding 3′-phosphoinositides; PKC is phosphorylated at a similar rate in serum-treated cells and serum-starved cells treated with the phosphoinositide 3-kinase inhibitors, LY294002 and wortmannin. Under the same conditions, the PDK-1-catalyzed phosphorylation of another substrate, Akt/protein kinase B, is abolished by these inhibitors. Our data are consistent with a model in which PDK-1 phosphorylates newly synthesized PKC by a mechanism that is independent of 3′-phosphoinositides.
AB - Phosphorylation by the phosphoinositide-dependent kinase, PDK-1, is required for the activation of diverse members of the AGC family of protein kinases, including the protein kinase C (PKC) isozymes. Here we explore the subcellular location of the PDK-1-mediated phosphorylation of conventional PKCs, and we address whether this phosphorylation is regulated by phosphoinositide 3-kinase. Pulse-chase experiments reveal that newly synthesized endogenous PKC α is primarily phosphorylated in the membrane fraction of COS-7 cells, where it is processed to a species that is phosphorylated at the activation loop and at two carboxyl-terminal positions. This "mature" species is then released into the cytosol. Deletion of the plekstrin homology domain of PDK-1 results in a 4-fold increase in the rate of processing of PKC indicating an autoinhibitory role for this domain. Autoinhibition by the plekstrin homology domain is not relieved by binding 3′-phosphoinositides; PKC is phosphorylated at a similar rate in serum-treated cells and serum-starved cells treated with the phosphoinositide 3-kinase inhibitors, LY294002 and wortmannin. Under the same conditions, the PDK-1-catalyzed phosphorylation of another substrate, Akt/protein kinase B, is abolished by these inhibitors. Our data are consistent with a model in which PDK-1 phosphorylates newly synthesized PKC by a mechanism that is independent of 3′-phosphoinositides.
UR - http://www.scopus.com/inward/record.url?scp=0035976977&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035976977&partnerID=8YFLogxK
U2 - 10.1074/jbc.M107416200
DO - 10.1074/jbc.M107416200
M3 - Article
C2 - 11579098
AN - SCOPUS:0035976977
SN - 0021-9258
VL - 276
SP - 45289
EP - 45297
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 48
ER -