The RNA replication enhancer element of tombusviruses contains two interchangeable hairpins that are functional during plus-strand synthesis?

T. Panavas, P. D. Nagy

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

Replication of the RNA genomes of tombusviruses, which are small plus-sense RNA viruses of plants, may be regulated by cis-acting elements, including promoters and replication enhancers that are present in the RNA templates. Using a partially purified RNA-dependent RNA polymerase (RdRp) preparation (P. D. Nagy and J. Pogany, Virology 276:279-288, 2000), we demonstrate that the minus-strand templates of tombusviruses contain a replication enhancer, which can upregulate RNA synthesis initiating from the minimal plus-strand initiation promoter by 10- to 20-fold in an in vitro assay. Dissection of the sequence of the replication enhancer element revealed that the two stem-loop structures present within the ∼80-nucleotide-long enhancer region have interchangeable roles in upregulating RNA synthesis. The single-stranded sequence located between the two stem-loops also plays an important role in stimulation of RNA synthesis. We also demonstrate that one of the two hairpins, both of which are similar to the hairpin of the minus-strand initiation promoter, can function as a promoter in vitro in the presence of short cytidylate-containing initiation sites. Overall, the in vitro data presented are consistent with previous in vivo results (D. Ray and K. A. White, Virology 256:162-171, 1999) and they firmly establish the presence of a replication enhancer on the minus-stranded RNA of tombusviruses.

Original languageEnglish
Pages (from-to)258-269
Number of pages12
JournalJournal of Virology
Volume77
Issue number1
DOIs
StatePublished - Jan 2003

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint

Dive into the research topics of 'The RNA replication enhancer element of tombusviruses contains two interchangeable hairpins that are functional during plus-strand synthesis?'. Together they form a unique fingerprint.

Cite this