The sphingoid long chain base phytosphingosine activates AGC-type protein kinases in Saccharomyces cerevisiae including Ypk1, Ypk2, and Sch9

Ke Liu, Xiping Zhang, Robert L. Lester, Robert C. Dickson

Research output: Contribution to journalArticlepeer-review

102 Scopus citations

Abstract

The Pkh1 protein kinase of Saccharomyces cerevisiae, a homolog of the mammalian 3-phosphoinositide-dependent kinase (PDK1), regulates downstream AGC-type protein kinases including Ypk1/2 and Pkc1, which control cell wall integrity, growth, and other processes. Phytosphingosine (PHS), a sphingoid long chain base, is hypothesized to be a lipid activator of Pkh1 and thereby controls the activity of Ypk1/2. Here we present biochemical evidence supporting this hypothesis, and in addition we demonstrate that PHS also stimulates autophosphorylation and activation of Ypk1/2. Greatest stimulation of Ypk1/2 phosphorylation and activity are achieved by inclusion of both PHS and Pkh1 in an in vitro kinase reaction. We also demonstrate for the first time that Pkh1 phosphorylates the Sch9 protein kinase in vitro and that such phosphorylation is stimulated by PHS. This is the first biochemical demonstration of Sch9 activators, and the results further support roles for long chain bases in heat stress resistance in addition to implying roles in chronological aging and cell size determination, since Sch9 functions in these processes. Thus, our data support a model in which PHS, rather than simply being an upstream activator of Pkh1, also activates kinases that are downstream targets of Pkh1 including Ypk1/2 and Sch9.

Original languageEnglish
Pages (from-to)22679-22687
Number of pages9
JournalJournal of Biological Chemistry
Volume280
Issue number24
DOIs
StatePublished - Jun 17 2005

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'The sphingoid long chain base phytosphingosine activates AGC-type protein kinases in Saccharomyces cerevisiae including Ypk1, Ypk2, and Sch9'. Together they form a unique fingerprint.

Cite this