Theoretical studies of the transition-state structures and free energy barriers for base-catalyzed hydrolysis of amides

Ying Xiong, Chang Guo Zhan

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

The transition-state structures and free energy barriers for the rate-determining step (i.e. the formation of a tetrahedral intermediate) of base-catalyzed hydrolysis of a series of amides in aqueous solution have been studied by performing first-principle electronic structure calculations using a hybrid supermolecule-polarizable continuum approach. The calculated results and a revisit of recently reported experimental proton inventory data reveal that the favorable transition-state structure optimized for the tetrahedral intermediate formation of hydroxide ion-catalyzed hydrolysis of formamide may have three solvating water molecules remaining on the attacking hydroxide oxygen and two additional water molecules attached to the carbonyl oxygen of formamide. The calculated results have also demonstrated interesting substituent effects on the optimized transition-state geometries, on the transition-state stabilization, and on the calculated free energy barriers for the base-catalyzed hydrolysis of amides. When some or all of the hydrogen atoms of formamide are replaced by methyl groups, the total number of water molecules hydrogen-bonding with the attacking hydroxide in the transition state decreases from three for formamide to two for N-methylacetamide, N,N-dimethylformamide (DMF), and N,N-dimethylacetamide (DMA). The larger substituents of the amide hinder the solvent water molecules approaching the attacking hydroxide oxygen in the transition state and, therefore, destabilize the transition-state structure and increase the free energy barrier. By using the optimized most favorable transition-state structures, the calculated free energy barriers, i.e., 21.6 (or 21.7), 22.7, 23.1, and 26.0 kcal/mol for formamide, N-methylacetamide, DMF, and DMA, respectively, are in good agreement with the available experimental free energy barriers, i.e., 21.2, 21.5, 22.6, and 24.1 kcal/mol for formamide, N-methylacetamide, DMF, and DMA, respectively.

Original languageEnglish
Pages (from-to)12644-12652
Number of pages9
JournalJournal of Physical Chemistry A
Volume110
Issue number46
DOIs
StatePublished - Nov 23 2006

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Theoretical studies of the transition-state structures and free energy barriers for base-catalyzed hydrolysis of amides'. Together they form a unique fingerprint.

Cite this