Abstract
Although the thermophysical properties of baled biomass play a critical role in developing postharvest quality models, these parameters have not been investigated for many bulk agricultural feedstocks including switchgrass. In this study, a dual thermal probe, consisting of a thermal conductivity probe and separate thermal diffusivity probe, was used to determine the thermal conductivity, thermal diffusivity, and specific heat of lab-scale rectangular bales of switchgrass (~10.16 × 10.16 × 30.48 cm). Thermal conductivity, thermal diffusivity, and specific heat ranged from 1.04E-2 to 6.10E-2 W m-1 °C-1, 0.863E-7 to 2.284E-7 m2 s-1, and 0.40 to 2.51 kJ kg-1 °C-1, respectively, depending on temperature (20.3°C, 30.2°C, and 40.1°C), moisture content (11.4%, 20.8%, 29.0%, and 42.3% on a wet basis), bulk density (157.2, 172.4, 197.2, and 230.1 kg m-3) and directional orientation (lateral or transverse). The results of this study promote a practical understanding of heat transfer within baled switchgrass while defining the dynamic relationship to material properties through multiple regression analysis. Anisotropism between the lateral and transverse bale orientations was observed with different heat transfer rates observed in both directional orientations. This anisotropism was attributed to the unique physical composition of the bulk material in the axial direction of bale compression (i.e., variation in porosity, discontinuous porous cavities, and material heterogeneity) compared to the composition of continuous stem material forming a layered flake of the rectangular bale.
Original language | English |
---|---|
Pages (from-to) | 1107-1114 |
Number of pages | 8 |
Journal | Applied Engineering in Agriculture |
Volume | 37 |
Issue number | 6 |
DOIs | |
State | Published - 2021 |
Bibliographical note
Publisher Copyright:© 2021 American Society of Agricultural and Biological Engineers
Keywords
- Biomass
- Bioprocessing
- High solids
- Thermal conductivity
- Thermal diffusivity
ASJC Scopus subject areas
- General Engineering