Thermoresponsive microcapsules for autonomic lithium-ion battery shutdown

M. Baginska, B. J. Blaiszik, S. A. Odom, A. E. Esser-Kahn, M. M. Caruso, J. S. Moore, N. R. Sottos, S. R. White

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Lithium-ion batteries are commonly used in consumer electronics applications such as cellular phones and computers. However, there are safety concerns, such as external heating, over-charging, high current charging, or physical damage, which prevent their full market acceptance. Autonomic shutdown of lithium-ion batteries, through functionalization of battery electrodes with thermoresponsive microcapsules, is proposed as a fail-safe mechanism. The proposed concept relies on monomer-filled microcapsules that can be triggered to rupture within a desired temperature range and deliver an electrically isolating core to the electrode surface to shut down the battery cell. Preparation of thermoresponsive microcapsules that can be triggered to rupture using a low-boiling point solvent and deliver a thermally polymerizable core is described. Additionally, we demonstrate that the rupture temperature can be controlled by appropriate selection of microencapsulated trigger solvents. Initial work on the coating of battery materials with thermoresponsive spheres is also described.

Original languageEnglish
Title of host publicationSociety for Experimental Mechanics - SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2010
Pages729-735
Number of pages7
StatePublished - 2010
EventSEM Annual Conference and Exposition on Experimental and Applied Mechanics 2010 - Indianapolis, IN, United States
Duration: Jun 7 2010Jun 10 2010

Publication series

NameSociety for Experimental Mechanics - SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2010
Volume1

Conference

ConferenceSEM Annual Conference and Exposition on Experimental and Applied Mechanics 2010
Country/TerritoryUnited States
CityIndianapolis, IN
Period6/7/106/10/10

Keywords

  • Autonomic
  • Emulsion polymerization
  • Lithium-ion batteries
  • Microcapsules
  • Thermoresponsive

ASJC Scopus subject areas

  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Thermoresponsive microcapsules for autonomic lithium-ion battery shutdown'. Together they form a unique fingerprint.

Cite this