Abstract
A three-dimensional (3D) multilayer model based on the skin physical structure is developed to investigate the transient thermal response of human skin subject to laser heating. The temperature distribution of the skin is modeled by the bioheat transfer equation, and the influence of laser heating is expressed as a source term where the strength of the source is a product of a Gaussian shaped incident irradiance, an exponentially shaped axial attenuation, and a time function. The water evaporation and diffusion is included in the model by adding two terms regarding the heat loss due to the evaporation and diffusion, where the rate of water evaporation is determined based on the theory of laminar boundary layer. Cryogen spray cooling (CSC) in laser therapy is studied, as well as its effect on the skin thermal response. The time-dependent equation is discretized using the finite difference method with the Crank-Nicholson scheme and the stability of the numerical method is analyzed. The large sparse linear system resulted from discretizing the governing partial differential equation is solved by a GMRES solver and the expected simulation results are obtained.
Original language | English |
---|---|
Pages (from-to) | 115-125 |
Number of pages | 11 |
Journal | Computer Methods in Biomechanics and Biomedical Engineering |
Volume | 8 |
Issue number | 2 |
DOIs | |
State | Published - 2005 |
Bibliographical note
Funding Information:*Corresponding author. E-mail: jzhang@cs.uky.edu; http://www.cs.uky.edu/,jzhang †This research work was supported in part by NSF under grants CCR-0092532 and ACR-0202934, in part by DOE under grant DE-FG02-02ER45961, and in part by University of Kentucky Faculty Research Support Program. § E-mail: wensheng@csr.uky.edu k E-mail: fyang0@engr.uky.edu
Keywords
- Bioheat and mass transfer
- Finite difference
- Laser heating
- Thermal injury
ASJC Scopus subject areas
- Bioengineering
- Biomedical Engineering
- Human-Computer Interaction
- Computer Science Applications